2 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Падение напряжения на проводах — расстояние от трансформатора до ламп или ленты

Содержание

В некоторых ситуациях можно превратить число 5 в гораздо большее значение. Для этого нужно оценить падение напряжения на проводах.

Именно оно является причиной ограничений — сам провод имеет внутреннее сопротивление и поэтому «съедает» часть напряжения источника тока. И когда провод слишком длинный, может случиться так, что лампам останется такая малая часть исходного напряжения, что они не загорятся.

Вторая часть проблемы — провод не просто «съедает» часть напряжения, а превращает его в тепло. Помимо того, что это просто бестолковое расходование электричества, так оно ещё и несёт в себе пожарную проблему — провод может нагреться слишком сильно.

Чтобы быть уверенным, что требуемые, например, 15 метров между трансформатором и лампой не принесут неприятностей, нужно оценить, сколько именно вольт потеряется на этих 15 метрах.

Рассчитать падение напряжения на проводе очень просто. Все необходимые для этого данные у Вас, как правило, есть: длина провода, суммарная мощность подключаемых ламп (ленты), напряжение питания и площадь поперечного сечения проводника. Нужно лишь дополнительно узнать удельное электрическое сопротивление материала, из которого изготовлен провод.

Электронные трансформаторы. Устройство и работа. Особенности

Рассмотрим основные преимущества, достоинства и недостатки электронных трансформаторов. Рассмотрим схему их работы. Электронные трансформаторы появились на рынке совсем недавно, но успели завоевать широкую популярность не только в радиолюбительских кругах.

В последнее время в интернете часто наблюдаются статьи на основе электронных трансформаторов: самодельные блоки питания, зарядные устройства и многое другое. На самом деле электронные трансформаторы являются простым сетевым импульсным блоком питания. Это самый дешевый блок питания. Зарядное устройство для телефона стоит дороже. Электронный трансформатор работает от сети 220 вольт.

Устройство и принцип действия
Схема работы

Генератором в этой схеме является диодный тиристор или динистор. Сетевое напряжение 220 В выпрямляется диодным выпрямителем. На входе питания присутствует ограничительный резистор. Он одновременно служит и предохранителем, и защитой от бросков сетевого напряжения при включении. Рабочую частоту динистора можно определить от номиналов R-С цепочки.

Таким образом можно увеличить рабочую частоту генератора всей схемы или уменьшить. Рабочая частота в электронных трансформаторах от 15 до 35 кГц, ее можно регулировать.

Трансформатор обратной связи намотан на маленьком колечке сердечника. В нем присутствуют три обмотки. Обмотка обратной связи состоит из одного витка. Две независимые обмотки задающих цепей. Это базовые обмотки транзисторов по три витка.

Это равноценные обмотки. Ограничительные резисторы предназначены для предотвращения ложных срабатываний транзисторов и одновременно ограничения тока. Транзисторы применяются высоковольтного типа, биполярные. Часто используют транзисторы MGE 13001-13009. Это зависит от мощности электронного трансформатора.

От конденсаторов полумоста тоже многое зависит, в частности мощность трансформатора. Они применяются с напряжением 400 В. От габаритных размеров сердечника основного импульсного трансформатора также зависит мощность. У него две независимые обмотки: сетевая и вторичная. Вторичная обмотка с расчетным напряжением 12 вольт. Наматывается она, исходя из требуемой мощности на выходе.

Первичная или сетевая обмотка состоит из 85 витков провода диаметром 0,5-0,6 мм. Используются маломощные выпрямительные диоды с обратным напряжением в 1 кВ и током в 1 ампер. Это самый дешевый выпрямительный диод, который можно найти серии 1N4007.

На схеме детально виден конденсатор, частотно задающий цепи динистора. Резистор на входе предохраняет от бросков напряжения. Динистор серии DB3, его отечественный аналог КН102. Также имеется ограничивающий резистор на входе. Когда напряжение на частотно задающем конденсаторе достигает максимального уровня, происходит пробой динистора. Динистор – это полупроводниковый искровой разрядник, который срабатывает при определенном напряжении пробоя. Тогда он подает импульс на базу одного из транзисторов. Начинается генерация схемы.

Транзисторы работают по противофазе. Образуется переменное напряжение на первичной обмотке трансформатора заданной частоты срабатывания динистора. На вторичной обмотке мы получаем нужное напряжение. В данном случае все трансформаторы рассчитаны на 12 вольт.

Электронные трансформаторы китайского производителя Taschibra

Он предназначен для питания галогенных ламп на 12 вольт.

Со стабильной нагрузкой, как галогенные лампы, такие электронные трансформаторы могут работать бесконечно долго. Во время работы схема перегревается, но не выходит из строя.

Принцип действия

Подается напряжение 220 вольт, выпрямляется диодным мостом VDS1. Через резисторы R2 и R3 начинает заряжаться конденсатор С3. Заряд продолжается то тех пор, пока не пробьется динистор DB3.

Напряжение открытия этого динистора составляет 32 вольта. После его открытия на базу нижнего транзистора поступает напряжение. Транзистор открывается, вызывая автоколебания этих двух транзисторов VT1 и VT2. Как работают эти автоколебания?

Ток начинает поступать через С6, трансформатор Т3, трансформатор управления базами JDT, транзистор VT1. При прохождении через JDT он вызывает закрытие VT1 и происходит открытие VT2. После этого ток течет через VT2, через трансформатор баз, Т3, С7. Транзисторы постоянно открывают и закрывают друг друга, работают в противофазе. В средней точке появляются прямоугольные импульсы.

Частота преобразования зависит от индуктивности обмотки обратной связи, емкости баз транзисторов, индуктивности трансформатора Т3 и емкостей С6, С7. Поэтому частотой преобразования управлять очень сложно. Еще частота зависит от нагрузки. Для форсирования открытия транзисторов используются ускоряющие конденсаторы на 100 вольт.

Для надежного закрытия динистора VD3 после возникновения генерации прямоугольные импульсы прикладываются к катоду диода VD1, и он надежно запирает динистор.

Кроме этого, есть устройства, которые используют для осветительных приборов, питают мощные галогенные лампы в течение двух лет, работают верой и правдой.

Блок питания на основе электронного трансформатора

Сетевое напряжение через ограничительный резистор поступает на диодный выпрямитель. Сам диодный выпрямитель состоит из 4-х маломощных выпрямителей с обратным напряжением в 1 кВ и током 1 ампер. Такой же выпрямитель стоит на блоке трансформатора. После выпрямителя постоянное напряжение сглаживается электролитическим конденсатором. От резистора R2 зависит время заряда конденсатора С2. При максимальном заряде срабатывает динистор, возникает пробой. На первичной обмотке трансформатора образуется переменное напряжение частоты срабатывания динистора.

Основное достоинство этой схемы – это наличие гальванической развязки с сетью 220 вольт. Основным недостатком является малый выходной ток. Схема предназначена для питания малых нагрузок.

Электронные трансформаторы DM-150T06A

Потребление тока 0,63 ампера, частота 50-60 герц, рабочая частота 30 килогерц. Такие электронные трансформаторы предназначены для питания более мощных галогенных ламп.

Достоинства и преимущества

Если использовать приборы по прямому назначению, то имеется хорошая функция. Трансформатор не включается без входной нагрузки. Если вы просто включили в сеть трансформатор, то он не активен. Нужно подключить на выход мощную нагрузку, чтобы началась работа. Эта функция экономит электроэнергию. Для радиолюбителей, которые переделывают трансформаторы в регулируемый блок питания, это является недостатком.

Можно реализовать систему автовключения и систему защиты от короткого замыкания. Несмотря на имеющиеся недостатки, электронный трансформатор всегда будет самой дешевой разновидностью блоков питания полумостового типа.

В продаже можно найти более качественные недорогие блоки питания с отдельным генератором, но все они реализуются на основе полумостовых схем с применением самотактируемых полумостовых драйверов, таких как IR2153 и ему подобные. Такие электронные трансформаторы гораздо лучше работают, более стабильны, реализована защита от короткого замыкания, на входе сетевой фильтр. Но старая Taschibra остается незаменимой.

Недостатки электронных трансформаторов

Они имеют ряд недостатков, несмотря на то, что они сделаны по хорошим схемам. Это отсутствие каких-либо защит в дешевых моделях. У нас простейшая схема электронного трансформатора, но она работает. Именно эта схема реализована в нашем примере.

На входе питания отсутствует сетевой фильтр. На выходе после дросселя должен стоять хотя бы сглаживающий электролитический конденсатор на несколько микрофарад. Но он тоже отсутствует. Поэтому на выходе диодного моста мы можем наблюдать нечистое напряжение, то есть, все сетевые и другие помехи передаются на схему. На выходе мы получаем минимальное количество помех, так как реализована гальваническая развязка.

Рабочая частота динистора крайне неустойчива, зависит от выходной нагрузки. Если без выходной нагрузки частота составляет 30 кГц, то с нагрузкой может наблюдаться довольно большой спад до 20 кГц, зависит от конкретной нагруженности трансформатора.

Читать еще:  Самодельные щупы для мультиметра

Еще одним недостатком можно назвать то, что на выходе этих устройств переменная частота и ток. Чтобы использовать электронные трансформаторы в качестве блока питания, нужно выпрямить ток. Выпрямлять нужно импульсными диодами. Обычные диоды тут не подходят из-за повышенной рабочей частоты. Поскольку в таких блоках питания не реализованы никакие защиты, то стоит лишь замкнуть выходные провода, блок не просто выйдет из строя, а взорвется.

Одновременно при коротком замыкании ток в трансформаторе увеличивается до максимума, поэтому выходные ключи (силовые транзисторы) просто лопнут. Выходит из строя и диодный мост, поскольку они рассчитаны на рабочий ток в 1 ампер, а при коротком замыкании рабочий ток резко увеличивается. Выходят также из строя ограничительные резисторы транзисторов, сами транзисторы, диодный выпрямитель, предохранитель, который должен предохранять схему, но не делает этого.

Еще несколько компонентов могут выйти из строя. Если у вас имеется такой блок электронного трансформатора, и он случайно выходит по каким-то причинам из строя, то ремонтировать его нецелесообразно, так как это не выгодно. Только один транзистор стоит 1 доллар. А готовый блок питания также можно купить за 1 доллар, совсем новый.

Мощности электронных трансформаторов

Сегодня в продаже можно найти разные модели трансформаторов, начиная от 25 ватт и заканчивая несколькими сотнями ватт. Трансформатор на 60 ватт выглядит следующим образом.

Производитель китайский, выпускает электронные трансформаторы мощностью от 50 до 80 ватт. Входное напряжение от 180 до 240 вольт, частота сети 50-60 герц, рабочая температура 40-50 градусов, выход 12 вольт.

Как получить различные напряжения от трансформатора с одной вторичной обмоткой

Предположим у нас имеется блок питания, в котором применён понижающий трансформатор с одной вторичной обмоткой без отводов (рис. 1.). Как можно в этом случае получить ряд других выходных напряжений?

Обычно в таких случаях наматывают дополнительные обмотки на трансформатор, что во-первых, трудоёмко, а во вторых не всегда выполнимо. Решить эту проблему позволяет применение дополнительного выпрямителя напряжения, который можно использовать для получения как повышенного напряжения, так и для получения отрицательного выходного напряжения.

В качестве примера приведён трансформаторный блок питания, в котором трансформатор Т1 имеет коэффициент трансформации 20:1, что позволяет получить из переменного сетевого напряжения 220 В напряжение 11 В, которое после выпрямления диодным мостом будет равным 15,5 В, так как 11*2 0,5 =15,5 (здесь и далее имеется ввиду напряжение холостого хода). Пульсации выходного напряжения сглаживаются RC фильтром, где R — это выходное сопротивление выпрямителя, С — это конденсатор фильтра С1.

Рис.1. Схема классического трансформаторного блока питания без стабилизации выходного напряжения

На рисунке 2 изображена схема трансформаторного блока питания, которая помимо основного выходного напряжения +15,5 вольт позволяет получить повышенное выходное напряжение +31 вольт. Здесь применён выпрямитель с удвоением напряжения, выполненный на диодах VD5, VD6, разделительном конденсаторе С2 и конденсаторе фильтра С3. Если бы анод диода VD5 был бы подключён к общему проводу, то на выходе выпрямителя было бы напряжение +15,5 вольт, но поскольку анод диода VD5 подключён к выходу основного выпрямителя, то выходные напряжения выпрямителей складываются и на выходе второго выпрямителя получается напряжение +31 вольт. Недостатком такой схемы включения дополнительного выпрямителя является зависимость выходного напряжения второго выпрямителя от степени нагрузки основного, так как под мощной нагрузкой выходное напряжение +15,5 вольт будет проседать, следовательно и выходное напряжение второго выпрямителя (+31 вольт) так же понизится, однако в некоторых случаях такая зависимость может быть вполне полезной.

Рис.2. Получение удвоенного выходного напряжения

На рисунке 3 изображена альтернативная схема подключения удваивающего выпрямителя, при такой схеме включения повышенное выходное напряжение гораздо меньше зависит от величины основного напряжения.

Рис.3. Схема выпрямителя с удвоением напряжения позволяет поучить двойную величину выходного напряжения

Для получения отрицательного выходного напряжения (рис. 4.) используется выпрямитель с удвоением напряжения, в котором все элементы включены в обратной полярности, так что на его выходе будет присутствовать отрицательное напряжение величиной -15,5 вольт.

Рис.4. Получение отрицательного выходного напряжения с помощью выпрямителя с удвоением напряжения

Во всех вышеописанных схемах выпрямителей конденсатор С2 включён последовательно со вторичной обмоткой трансформатора Т1, так что максимальный ток нагрузки вторичных напряжений будет зависеть от ёмкости этого конденсатора. Для получения более низких выходных напряжений можно воспользоваться интегральными стабилизаторами типа 78хх или 79хх (7805, 7912), включёнными по классическим схемам, не забывая ставить на их выходы блокировочные конденсаторы, предотвращающие возможное самовозбуждение этих микросхем.

Все эти выпрямительные схемы могут быть использованы одновременно, так что можно получить от одного блока питания ряд напряжений +15,5, +31 и -15,5 вольт.

Сборка устройства

Трансформатор

Теперь обо всем по порядку. Силовой трансформатор марки ТС-160 или ТС-180 можно достать из старых черно-белых телевизоров “Рекорд”, но такового я не нашел и пошел в радиомагазин. Давайте разглядим его поближе.

Вот лепестки, куда паяются выводы обмоток трансформатора.

А вот здесь прямо на трансформаторе есть табличка, на каких лепестках какое напряжение. Это значит, что если подать на лепесток № 1 и 8 220 Вольт, то на лепестках №3 и 6 мы получим 33 Вольта и максимальную силу тока в нагрузку 0,33 Ампера и тд. Но нас больше всего интересуют обмотки №13 и 14. На них мы можем получить 6,55 Вольт и максимальную силу тока 7,5 Ампер.

Для того, чтобы заряжать аккумулятор нам как раз потребуется большая сила тока. Но напряжения то у нас не хватает… Аккумулятор выдает 12 Вольт, но для того, чтобы его зарядить, напряжение зарядки должно превышать напряжение аккумулятора. 6,55 Вольт здесь никак не сгодится. Зарядное устройство нам должно выдавать 13-16 Вольт . Поэтому, мы прибегаем к очень хитрому решению.

Как вы заметили, трансформатор состоит из двух колон. Каждая колонна дублирует другую колонну. Места, где выходят выводы обмоток пронумерованы. Для того, чтобы увеличить напряжение, нам нужно просто-напросто соединить две обмотки последовательно. Для этого соединяем обмотки 13 и 13′ и снимаем напряжение с обмоток 14 и 14′. 6,55 + 6,55 = 13,1 Вольт. Вот такое переменное напряжение мы получим.

Диодный мост

Для того, чтобы выпрямить переменное напряжение, мы используем диодный мост. Собираем диодный мост на мощных диодах, потому как через них будет проходить приличная сила тока. Для этого нам потребуются диоды Д242А или какие-нибудь другие, рассчитанные на ток от 5 Ампер. Через наши силовые диоды может течь прямой ток до 10 Ампер, что идеально подходит нашему самопальному заряднику.

Также можно отдельно купить диодный мост сразу готовым модулем. В самый раз подойдет диодный мост КВРС5010, который можно купить на Али по этой ссылке или в ближайшем радиомагазине

Полностью посаженный аккумулятор обладает низким напряжением. По мере зарядки напряжение на нем становится все больше и больше. Следовательно, у нас сила тока в цепи в самом начале зарядки будет очень большая, а потом пойдет на убыль. Согласно Закону Джоуля-Ленца, при большой силе тока будет происходить нагрев диодов. Поэтому, чтобы их не спалить, нужно отбирать от них тепло и рассеивать в окружающем пространстве. Для этого нам нужны радиаторы. В качестве радиатора я разобрал нерабочий компьютерный блок питания, разрезал на полоски жестянку и прикрутил к ним по диоду.

Амперметр

Для чего в схеме амперметр? Для того, чтобы контролировать процесс зарядки. Не забудьте подключить амперметр последовательно нагрузке.

Когда аккумулятор полностью разряжен, он начинает жрать (слово “кушать” думаю здесь неуместно) ток. Жрет он порядка 4-5 Ампер. По мере зарядки он кушает все меньше и меньше силы тока. Поэтому, когда стрелка прибора покажет на 1 Ампер, то аккумулятор можно считать заряженным. Все гениально и просто :-).

Крокодилы

Выводим два крокодила для клемм аккумулятора с нашего зарядного устройства. При зарядке не путайте полярность. Лучше как-нибудь пометить их или взять разных цветов.

Если все правильно собрано, то на крокодилах мы должны увидеть вот такую форму сигнала (по идее верхушки должны быть сглажены, так как синусоида), но разве что-то предъявишь нашему провайдеру электричества ))). В первый раз видите что-то подобное? Бегом сюда!

Импульсы постоянного напряжения лучше заряжают аккумулятор, чем чистый постоянный ток. А как получить чистый постоянный ток из переменного описано в статье Как получить из переменного напряжения постоянное.

Управление электропитанием в доме или офисе — это способ улучшить работу электроприборов и сделать напряжение более стабильным. Обычно это делается с помощью силового трансформатора, но существуют другие варианты, если по какой-то причине этот метод не подходит.

Разъёмы напряжения переменного тока

Напряжение — это измерение электричества, которое включает в себя сравнение разности электрической потенциальной энергии между двумя точками в цепи. Напряжение измеряется в вольтах, обозначенных буквой V, и может быть измерено с помощью вольтметра.

Источниками питания являются два разных типа тока. Переменный ток (AC) — это ток, который постоянно меняет направление, этот тип подается от сети. Другим типом является постоянный ток (DC), который течет только в одном направлении, а находится он в батареях и ячейках. Батарея имеет гораздо меньшее напряжение, чем питание от сети. Стандартное сетевое напряжение в России составляет 220 В, что выше, чем в большинстве других стран, где стандартное напряжение часто составляет около 120 В.

Способы увеличения напряжения переменного тока

Существуют различные ситуации, когда человек может захотеть увеличить напряжение переменного тока в комнате или здании. Например, в некоторых районах уровень напряжения изменяется, уменьшаясь в то время, когда многие люди используют электроприборы, поскольку электропитание распределяется для множества потребителей. Это может повлиять на работу таких приборов, как потолочный вентилятор или даже холодильник, который может прекратить свою работу в это время.

Читать еще:  Свисток из алюминиевой банки

1. Использование трансформатора

Стандартный способ увеличения напряжения переменного тока — это использование силового трансформатора. Популярным инструментом для этой задачи является автотрансформатор. Он не изменяет напряжение автоматически, как может показаться исходя из его названия, но вместо этого позволяет пользователю вручную регулировать напряжение в соответствии с требованиями.

Этот метод может быть опасен, если приборы, подключенные к источнику питания, потребляют более высокое напряжение, чем-то для работы которого предназначен трансформатор, это называется перенапряжением. Трансформатор также является дорогостоящей покупкой, что является еще одной причиной, по которой люди часто ищут альтернативный вариант.

2. Источник бесперебойного питания

Один из способов поддерживать постоянство уровня напряжения — использовать электрическое устройство, называемое источником бесперебойного питания. ИБП работает как батарея, которая заряжается энергией от сети во время подачи высокого напряжения, а затем отдает эту энергию обратно во время подачи низкого напряжения. Это то же самое, что и форма резервного копирования при отключении питания, которая часто используется компаниями, использующими компьютеры или другое электрооборудование, которое не может потерять свой источник питания.

3. Удвоитель напряжения

Другим устройством, которое может использоваться для управления уровнем напряжения переменного тока, является множитель напряжения, такой как удвоитель напряжения. Это электрическая цепь, которая использует конденсаторы и диоды для преобразования мощности переменного тока при более низком напряжении в более высокое постоянное напряжение. По своему принципу работы эти устройства схожи с компенсационными стабилизаторами напряжения. Однако удвоители напряжения очень сложно в области технического обслуживания, поэтому рекомендуются только тем, кто хорошо разбирается в электронике.

Как купить устройство для выравнивания напряжения

Есть много продавцов, специализирующихся на электрооборудовании, таких как силовые трансформаторы и источники бесперебойного питания в специализированных магазинах, однако в интернет-магазине выбор товаров всегда больше. Покупать товары в интернете — это прекрасная идея, ведь приобрести любое устройство можно по разумной цене, не переплачивая магазинам наценку за аренду и другие услуги. Просто используйте панель поиска, в любом удобном ля вас браузере, а затем проведите фильтрацию полученных результатов. Большинство продавцов предоставляют подробную информацию о своей продукции, но они будут рады ответить на интересующие вас вопросы, чтобы помочь клиентам убедиться, что они делают правильную покупку.

Поскольку электрооборудование может быть опасным, особенно важно покупать у надежного продавца, поэтому сначала взгляните на их рейтинги и отзывы клиентов. Если вам нужно действительно качественное устройство для обеспечения стабильной подачи электричество в доме или квартире, рекомендуем приобрести стабилизатор напряжения из нашего каталога или позвонить по тел: +7 (495) 724-31-17. Где вам подробно ответят на все интересующие вас вопросы касательно данной продукции и подберут наилучшую модель стабилизатора напряжения, источника бесперебойного питания и т.д.

Формула для расчёта падения напряжения на проводах

Достаточно легко выводится простая общая формула для расчёта падения напряжения, применимая в любой ситуации.

Нам понадобится только закон Ома R = V / I и формула связи электрической мощности, напряжения и силы тока W = V · I.

Также для оценки сопротивления провода нужно знать значение удельного электрического сопротивления [википедия] материала проводника.

Проведя простые выкладки, получим вот такую формулу, дающую оценку значения падения напряжения на проводах:

Оценка падения напряжения на проводах

Падение напряжения зависит от типа материала провода, сечения провода, его длины, мощности потребителей и напряжения источника питания. В этой формуле обозначено:

  • W — мощность в ваттах потребителей тока на конце провода;
  • V — напряжение источника тока в вольтах, как правило, 12 вольт или 24 вольта;
  • L — длина провода в метрах, т.е. удалённость потребителей от трансформатора;
  • S — площадь сечения провода в мм²;
  • ρ — значение удельного электрического сопротивление в Ом·мм²/м, для меди это примерно 0.018 Ом·мм²/м

Формула проста, но применима только в случае, если ожидаемое падение напряжения невелико, не более нескольких процентов, т.е. когда расстояние между трансформатором и потребителем не превышает 10 метров, а мощность менее 10-20 ватт.

В иных случаях следует воспользоваться более точной формулой:

Точное значение падения напряжения на проводах

Теперь, вычислив значение падение напряжения на проводах, мы можем оценить, какая мощность будет теряться — просто расходоваться на нагрев проводов. Нужно полученное значение падения напряжения умножить на мощность потребителей тока W и поделить на напряжение трансформатора V:

Оценка падения мощности на проводах

Если эта мощность получится слишком большой, то, очевидно, нужно увеличить толщину провода. Иначе можно получить разные неприятности вплоть до пожара.

Электронные трансформаторы. Устройство и работа. Особенности

Рассмотрим основные преимущества, достоинства и недостатки электронных трансформаторов. Рассмотрим схему их работы. Электронные трансформаторы появились на рынке совсем недавно, но успели завоевать широкую популярность не только в радиолюбительских кругах.

В последнее время в интернете часто наблюдаются статьи на основе электронных трансформаторов: самодельные блоки питания, зарядные устройства и многое другое. На самом деле электронные трансформаторы являются простым сетевым импульсным блоком питания. Это самый дешевый блок питания. Зарядное устройство для телефона стоит дороже. Электронный трансформатор работает от сети 220 вольт.

Устройство и принцип действия
Схема работы

Генератором в этой схеме является диодный тиристор или динистор. Сетевое напряжение 220 В выпрямляется диодным выпрямителем. На входе питания присутствует ограничительный резистор. Он одновременно служит и предохранителем, и защитой от бросков сетевого напряжения при включении. Рабочую частоту динистора можно определить от номиналов R-С цепочки.

Таким образом можно увеличить рабочую частоту генератора всей схемы или уменьшить. Рабочая частота в электронных трансформаторах от 15 до 35 кГц, ее можно регулировать.

Трансформатор обратной связи намотан на маленьком колечке сердечника. В нем присутствуют три обмотки. Обмотка обратной связи состоит из одного витка. Две независимые обмотки задающих цепей. Это базовые обмотки транзисторов по три витка.

Это равноценные обмотки. Ограничительные резисторы предназначены для предотвращения ложных срабатываний транзисторов и одновременно ограничения тока. Транзисторы применяются высоковольтного типа, биполярные. Часто используют транзисторы MGE 13001-13009. Это зависит от мощности электронного трансформатора.

От конденсаторов полумоста тоже многое зависит, в частности мощность трансформатора. Они применяются с напряжением 400 В. От габаритных размеров сердечника основного импульсного трансформатора также зависит мощность. У него две независимые обмотки: сетевая и вторичная. Вторичная обмотка с расчетным напряжением 12 вольт. Наматывается она, исходя из требуемой мощности на выходе.

Первичная или сетевая обмотка состоит из 85 витков провода диаметром 0,5-0,6 мм. Используются маломощные выпрямительные диоды с обратным напряжением в 1 кВ и током в 1 ампер. Это самый дешевый выпрямительный диод, который можно найти серии 1N4007.

На схеме детально виден конденсатор, частотно задающий цепи динистора. Резистор на входе предохраняет от бросков напряжения. Динистор серии DB3, его отечественный аналог КН102. Также имеется ограничивающий резистор на входе. Когда напряжение на частотно задающем конденсаторе достигает максимального уровня, происходит пробой динистора. Динистор – это полупроводниковый искровой разрядник, который срабатывает при определенном напряжении пробоя. Тогда он подает импульс на базу одного из транзисторов. Начинается генерация схемы.

Транзисторы работают по противофазе. Образуется переменное напряжение на первичной обмотке трансформатора заданной частоты срабатывания динистора. На вторичной обмотке мы получаем нужное напряжение. В данном случае все трансформаторы рассчитаны на 12 вольт.

Электронные трансформаторы китайского производителя Taschibra

Он предназначен для питания галогенных ламп на 12 вольт.

Со стабильной нагрузкой, как галогенные лампы, такие электронные трансформаторы могут работать бесконечно долго. Во время работы схема перегревается, но не выходит из строя.

Принцип действия

Подается напряжение 220 вольт, выпрямляется диодным мостом VDS1. Через резисторы R2 и R3 начинает заряжаться конденсатор С3. Заряд продолжается то тех пор, пока не пробьется динистор DB3.

Напряжение открытия этого динистора составляет 32 вольта. После его открытия на базу нижнего транзистора поступает напряжение. Транзистор открывается, вызывая автоколебания этих двух транзисторов VT1 и VT2. Как работают эти автоколебания?

Ток начинает поступать через С6, трансформатор Т3, трансформатор управления базами JDT, транзистор VT1. При прохождении через JDT он вызывает закрытие VT1 и происходит открытие VT2. После этого ток течет через VT2, через трансформатор баз, Т3, С7. Транзисторы постоянно открывают и закрывают друг друга, работают в противофазе. В средней точке появляются прямоугольные импульсы.

Частота преобразования зависит от индуктивности обмотки обратной связи, емкости баз транзисторов, индуктивности трансформатора Т3 и емкостей С6, С7. Поэтому частотой преобразования управлять очень сложно. Еще частота зависит от нагрузки. Для форсирования открытия транзисторов используются ускоряющие конденсаторы на 100 вольт.

Для надежного закрытия динистора VD3 после возникновения генерации прямоугольные импульсы прикладываются к катоду диода VD1, и он надежно запирает динистор.

Кроме этого, есть устройства, которые используют для осветительных приборов, питают мощные галогенные лампы в течение двух лет, работают верой и правдой.

Блок питания на основе электронного трансформатора

Сетевое напряжение через ограничительный резистор поступает на диодный выпрямитель. Сам диодный выпрямитель состоит из 4-х маломощных выпрямителей с обратным напряжением в 1 кВ и током 1 ампер. Такой же выпрямитель стоит на блоке трансформатора. После выпрямителя постоянное напряжение сглаживается электролитическим конденсатором. От резистора R2 зависит время заряда конденсатора С2. При максимальном заряде срабатывает динистор, возникает пробой. На первичной обмотке трансформатора образуется переменное напряжение частоты срабатывания динистора.

Читать еще:  Как сделать дубликат ключа за 15 минут

Основное достоинство этой схемы – это наличие гальванической развязки с сетью 220 вольт. Основным недостатком является малый выходной ток. Схема предназначена для питания малых нагрузок.

Электронные трансформаторы DM-150T06A

Потребление тока 0,63 ампера, частота 50-60 герц, рабочая частота 30 килогерц. Такие электронные трансформаторы предназначены для питания более мощных галогенных ламп.

Достоинства и преимущества

Если использовать приборы по прямому назначению, то имеется хорошая функция. Трансформатор не включается без входной нагрузки. Если вы просто включили в сеть трансформатор, то он не активен. Нужно подключить на выход мощную нагрузку, чтобы началась работа. Эта функция экономит электроэнергию. Для радиолюбителей, которые переделывают трансформаторы в регулируемый блок питания, это является недостатком.

Можно реализовать систему автовключения и систему защиты от короткого замыкания. Несмотря на имеющиеся недостатки, электронный трансформатор всегда будет самой дешевой разновидностью блоков питания полумостового типа.

В продаже можно найти более качественные недорогие блоки питания с отдельным генератором, но все они реализуются на основе полумостовых схем с применением самотактируемых полумостовых драйверов, таких как IR2153 и ему подобные. Такие электронные трансформаторы гораздо лучше работают, более стабильны, реализована защита от короткого замыкания, на входе сетевой фильтр. Но старая Taschibra остается незаменимой.

Недостатки электронных трансформаторов

Они имеют ряд недостатков, несмотря на то, что они сделаны по хорошим схемам. Это отсутствие каких-либо защит в дешевых моделях. У нас простейшая схема электронного трансформатора, но она работает. Именно эта схема реализована в нашем примере.

На входе питания отсутствует сетевой фильтр. На выходе после дросселя должен стоять хотя бы сглаживающий электролитический конденсатор на несколько микрофарад. Но он тоже отсутствует. Поэтому на выходе диодного моста мы можем наблюдать нечистое напряжение, то есть, все сетевые и другие помехи передаются на схему. На выходе мы получаем минимальное количество помех, так как реализована гальваническая развязка.

Рабочая частота динистора крайне неустойчива, зависит от выходной нагрузки. Если без выходной нагрузки частота составляет 30 кГц, то с нагрузкой может наблюдаться довольно большой спад до 20 кГц, зависит от конкретной нагруженности трансформатора.

Еще одним недостатком можно назвать то, что на выходе этих устройств переменная частота и ток. Чтобы использовать электронные трансформаторы в качестве блока питания, нужно выпрямить ток. Выпрямлять нужно импульсными диодами. Обычные диоды тут не подходят из-за повышенной рабочей частоты. Поскольку в таких блоках питания не реализованы никакие защиты, то стоит лишь замкнуть выходные провода, блок не просто выйдет из строя, а взорвется.

Одновременно при коротком замыкании ток в трансформаторе увеличивается до максимума, поэтому выходные ключи (силовые транзисторы) просто лопнут. Выходит из строя и диодный мост, поскольку они рассчитаны на рабочий ток в 1 ампер, а при коротком замыкании рабочий ток резко увеличивается. Выходят также из строя ограничительные резисторы транзисторов, сами транзисторы, диодный выпрямитель, предохранитель, который должен предохранять схему, но не делает этого.

Еще несколько компонентов могут выйти из строя. Если у вас имеется такой блок электронного трансформатора, и он случайно выходит по каким-то причинам из строя, то ремонтировать его нецелесообразно, так как это не выгодно. Только один транзистор стоит 1 доллар. А готовый блок питания также можно купить за 1 доллар, совсем новый.

Мощности электронных трансформаторов

Сегодня в продаже можно найти разные модели трансформаторов, начиная от 25 ватт и заканчивая несколькими сотнями ватт. Трансформатор на 60 ватт выглядит следующим образом.

Производитель китайский, выпускает электронные трансформаторы мощностью от 50 до 80 ватт. Входное напряжение от 180 до 240 вольт, частота сети 50-60 герц, рабочая температура 40-50 градусов, выход 12 вольт.

Как сделать простую схему удвоителя напряжения из диодов и конденсаторов, увеличиваем напряжение на выходной обмотке трансформатора.

Данная простая схема удвоителя, а если еще точнее говоря, то почти утроителя напряжения будет весьма полезна именно в тех случаях, когда у вас имеется трансформатор с пониженным напряжением, а на выходе нужно получить раза в два, два с половиной больше. Например, когда разбираешь какую нибудь старую электротехнику, то можно из нее вытащить силовой трансформатор. Когда же начинаешь на нем измерять выходное напряжение, то оказывается, что оно где-то 6, 7, 8 вольт. Хотя зачастую применяется 12, реже 15, и 24 вольта. Вот и поставив на выходную обмотку эту схему удвоителя напряжения мы из более низкого переменного напряжения можем получить более высокое, которое нам необходимо.

Но, не все так просто в этой схеме. Закона сохранения энергии никто не отменял. То есть, наш трансформатор имеет максимальную выходную мощность, которая равна напряжение выходной обмотки в вольтах умноженное на силу максимального тока в амперах, который может обеспечить эта вторичная обмотка. Когда же мы к этой выходной обмотке подключим наш диодно конденсаторный удвоитель напряжения, то на его выходе будет увеличенное напряжение, но это произойдет за счет уменьшения силы тока на выходе. Следовательно повышение напряжения происходит за счет увеличенного потребления тока с выхода трансформатора.

Теперь разберемся в конкретных потерях этого тока. Потеря будет приблизительно равна больше чем 50%. То есть, на выходе удвоителя можно реально получить где-то 35-45% от 100%, что может обеспечить выходная обмотка трансформатора. Другими словами говоря. Если наш трансформатор при своем небольшом напряжении около 6 вольт мог выдавать допустим 1 ампер, то при использовании схемы удвоителя напряжения мы получим 14 вольт с максимальным выходным током где-то в 0,4 А.

Так что перед использованием подобных удвоителей напряжения учтите данный факт, касающейся этой самой потери по току. Если же ваш трансформатор на своей выходной обмотке имеет достаточно толстый провод и рассчитан на приличный ток, но при этом выдает пониженное напряжение, то применение таких удвоителей полностью оправдано.

Ну, а теперь пару слов о принципе действия данного удвоителя напряжения. Итак, как известно переменный ток периодически меняет свою полярность. Его плюс и минус постоянно меняются местами, имея синусоидальную форму. Мы имеем два конденсатора, каждый из которых заряжается своей полуволной. То есть, диоды стоят таким образом, что при одной полярности переменного тока происходит заряд одного конденсатора, а при противоположной полярности заряжается второй конденсатор. В результате за один период происходит заряд обоих емкостей. Эти конденсаторы соединены между собой последовательно. Следовательно их суммарное напряжение будет в два раза больше, чем на каждом из них по отдельности. Но если измерить выходное напряжение на удвоителе, то оно окажется чуть более чем 2 раза от того, что выходит со вторичной обмотки трансформатора. Почему так происходит?

Дело в том, что существует так называемое действительное значение напряжения и амплитудное. Амплитудное значение в 1,41 раза больше действительного. Если посмотреть на графике, то максимальная точка, пик синусоиды переменного напряжения и будет амплитудным значением. В то время как усредненное значение этих синусоидальных напряженией будет соответствовать действительному значению напряжения. Когда происходит заряд конденсатора после выпрямительного диода, моста, то величина этого напряжения будет соответствовать амплитудному напряжению. То есть, наши 6 вольт переменного напряжения, что на выходе трансформатора увеличиваем в 1,41 и уже умножим на 2. И получаем итоговое напряжение на выходе нашего удвоителя, точнее почти утроителя, напряжения.

Теперь какие именно нужно ставить диоды и конденсаторы в схему удвоителя напряжения. Обратное напряжение диодов не должно быть меньше, чем то напряжение, которое у нас имеется на входе удвоителя напруги. А лучше иметь запас как по обратному напряжению, так и по прямому току не менее 25%. Ну, и прямой ток применяемых диодов должен быть больше, чем максимальный ток, что мы будем иметь на выходе схемы под нагрузкой. От емкости конденсаторов зависит как величина падения напряжения, так и сила максимального тока. То есть, чем больше емкость будут иметь конденсаторы, тем меньше будет падение напряжения при работе схемы, так и большую силу тока мы получим, протекающего через нагрузку. Конденсаторы должны быть рассчитаны на напряжение не меньше, чем выходное на трансформаторе (все тот же минимальный запас в 25%).

Видео по этой теме:

P.S. Для питание простых нагрузок, типа лампочки, светодиоды, нагреватели, простые схемы, не требующие особой стабильности данный удвоитель можно подключать напрямую. Но если вы планируете питать этим удвоителем более чувствительные к стабильному напряжению схемы, то придется применять еще стабилизаторы напряжения. К примеру можно использовать простой и недорогой стабилизатор на микросхеме LM317, или подобные ему. Да хотя бы поставить самый обычный стабилизатор напряжения на транзисторах и опорном стабилитроне, чего уже хватит для питания многих схем.

Заключение

Не поленитесь доработать свое устройство плавкими предохранителями. Номиналы предохранителей на схеме. Не проверяйте на искру напряжение на крокодилах зарядника, иначе лишитесь предохранителя.

Внимание! Схема данного ЗУ предназначена для быстрой зарядки вашего аккумулятора в критических случаях, когда надо срочно куда-то ехать через 2-3 часа. Не используйте ее для повседневного обращения, так как заряд идет при максимальное токе, что не самый лучший режим зарядки для вашего аккумулятора. При перезаряде начинет “кипеть” электролит и в окружающее пространство начнут выделяться ядовитые пары.

Тех, кого заинтересовала теория зарядных устройств (ЗУ), а также схемы нормальных ЗУ, то в обязательном порядке качаем эту книжку по этой ссылке. Ее можно назвать библией по зарядным устройствам.

Ссылка на основную публикацию
Статьи c упоминанием слов:
Adblock
detector