7 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Конденсатор вместо аккумулятора

Содержание

Конденсатор вместо аккумулятора

Для накопления электроэнергии люди сначала использовали конденсаторы. Потом, когда электротехника вышла за пределы лабораторных опытов, изобрели аккумуляторы, ставшие основным средством для запасания электрической энергии. Но в начале XXI века снова предлагается использовать конденсаторы для питания электрооборудования. Насколько это возможно и уйдут ли аккумуляторы окончательно в прошлое?

Причина, по которой конденсаторы были вытеснены аккумуляторами, была связана со значительно большими значениями электроэнергии, которые они способны накапливать. Другой причиной является то, что при разряде напряжение на выходе аккумулятора меняется очень слабо, так что стабилизатор напряжения или не требуется или же может иметь очень простую конструкцию.

Главное различие между конденсаторами и аккумуляторами заключается в том, что конденсаторы непосредственно хранят электрический заряд, а аккумуляторы превращают электрическую энергию в химическую, запасают ее, а потом обратно преобразуют химическую энерию в электрическую.

При преобразованиях энергии часть ее теряется. Поэтому даже у лучших аккумуляторов КПД составляет не более 90%, в то время, как у конденсаторов он может достигать 99%. Интенсивность химических реакций зависит от температуры, поэтому на морозе аккумуляторы работают заметно хуже, чем при комнатной температуре. Кроме этого, химические реакции в аккумуляторах не полностью обратимы. Отсюда малое количество циклов заряда-разряда (порядка единиц тысяч, чаще всего ресурс аккумулятора составляет около 1000 циклов заряда-разряда), а также «эффект памяти». Напомним, что «эффект памяти» заключается в том, что аккумулятор нужно всегда разряжать до определенной величины накопленной энергии, тогда его емкость будет максимальной. Если же после разрядки в нем остается больше энергии, то емкость аккумулятора будет постепенно уменьшаться. «Эффект памяти» свойственнен практически всем серийно выпускаемым типам аккумуляторов, кроме, кислотных (включая их разновидности — гелевые и AGM). Хотя принято считать, что литий-ионным и литий-полимерным аккумуляторам он не свойственнен, на самом деле и у них он есть, просто проявляется в меньшей степени, чем в других типах. Что же касается кислотных аккумуляторов, то в них проявляется эффект сульфатации пластин, вызывающий необратимую порчу источника питания. Одной из причин является длительное нахождение аккумулятора в состоянии заряда менее, чем на 50%.

Применительно к альтернативной энергетике «эффект памяти» и сульфатация пластин являются серьезными проблемами. Дело в том, что поступление энергии от таких источников, как солнечные батареи и ветряки, сложно спрогнозировать. В результате заряд и разряд аккумуляторов происходят хаотично, в неоптимальном режиме.

Для современного ритма жизни оказывается абсолютно неприемлемо, что аккумуляторы приходится заряжать несколько часов. Например, как вы себе представляете поездку на электромобиле на дальние расстояния, если разрядившийся аккумулятор задержит вас на несколько часов в пункте зарядки? Скорость зарядки аккумулятора ограничена скоростью протекающих в нем химических процессов. Можно сократить время зарядки до 1 часа, но никак не до нескольких минут. В то же время, скорость зарядки конденсатора ограничена только максимальным током, который дает зарядное устройство.

Перечисленные недостатки аккумуляторов сделали актуальным использование вместо них конденсаторов.

Ионистор вместо аккумулятора: наглядная сборка накопителя энергии

Ионистор вместо аккумулятора (он же суперконденсатор, ультраконденсатор) — в принципе это тот же конденсатор, только имеющий большую емкость, которую можно сравнить с аккумулятором. Вот именно такое устройство рассчитанное на напряжение 12v я собрал для нужд в бытовом хозяйстве. Практически такой прибор способен работать во много раз дольше, чем аккумуляторы различных типов, конечно при условии эксплуатации в определенных режимах. Вот в чем особенность применения ионистора вместо аккумулятора и его преимущество:

  • прибору не страшен полный разряд до нулевого значения;
  • в несколько сотен раз больше способен выдержать моментов заряда/разряда;
  • прибор не боится максимальных значений по току.

Но не только такие особенности имеются у ионистора использующегося вместо аккумулятора, о них я скажу после выполнения сборки накопителя.

Необходимые компоненты

  • Суперконденсаторы в количестве восьми штук с номиналом 2,7v х 500F
  • Одножильый провод сечением от 2 мм²
  • Пару винтов и гаек

  • Инструмент: паяльник, пинцет, кусачки.
  • Расходники: припой, флюс.
  • Ионистор вместо аккумулятора — порядок сборки батареи

    В данном обзоре я буду собирать накопитель энергии с применением восьми конденсаторов, включенных по встречно-параллельной схеме. В принципе будет организованно четыре пары по две емкости включенных параллельно, а пары в свою очередь соединены последовательно.

    Эмалированный провод нужно выровнять и убрать с него лак. Выполняется это с помощью рабочего ножа или специального инструмента для зачистки проводов ( у кого он имеется).

    Формируем медный провод в соединительные шины

    Необходимо изготовить три квадратных элемента и пару полюсов для клемм «+» и «-«

    К сформированным изделиям для контактов припаиваем гайки, к которым будут подключаться провода питания.

    Залуживаем места соединения квадратов.

    Соединяем емкости в батарею, припаиваем проводники к выводам конденсатора, соблюдая при этом полярность.

    Вначале нужно собрать четыре группы.

    Теперь припаиваем шины для подключения проводов питания.

    На этом этапе нужно зарядить батарею током 5А.

    По истечению пяти минут накопитель будет полностью заряжен.

    Делаем испытательный тест лампой накаливания.

    Делаем короткое замыкание выходных контактов — провод разогрелся до красного состояния.

    Испытываем батарею подключением электромотора.

    Где такая конструкцию используется

    Использовать можно ионистор вместо аккумулятора, там где присутствуют большие и цикличные нагрузки по току. Классический пример: накопительная емкость для сабвуфера установленного в автомобиле. Кроме этого суперконденсатор может быть задействован в устройствах где происходят постоянные циклы зарядки/разрядки, например: устройства накопления солнечной энергии с последующей ее передачей фонарям освещения в ночное время.

    Здесь приведены только два примера использования ионистора вместо аккумулятора, но на самом деле их существенно больше.
    Стоимость компонентов для сборки такого прибора вполне приемлема, особенно если взять во внимание колоссальный срок их эксплуатации с учетом применения по назначению.

    Сборка ионистора вместо аккумулятора 12v, 100A

    Достоинства суперконденсаторов

    По сравнению с самыми современными батареями суперконденсаторы заряжаются и выделяют энергию намного быстрее. Кроме того, они могут выдерживать значительно больше циклов зарядки и разрядки без потери емкости.

    В случае с Sian суперконденсатор приводит в действие электродвигатель мощностью 25 киловатт, который встроен в коробку передач. Он может либо обеспечить дополнительный прирост 6,5-литрового V12 ДВС мощностью 785 лошадиных сил, либо управлять спортивным автомобилем самостоятельно во время маневров на низкой скорости, например, при парковке.

    Поскольку зарядка очень быстрая, этот гибрид не нужно подключать к сетевой розетке или зарядной станции. Суперконденсаторы заряжаются полностью каждый раз, когда автомобиль тормозит. Аккумуляторные гибриды также имеют рекуперацию тормозной энергии, но она медленная и лишь частично помогает продлить электрический пробег.

    Читать еще:  Самый вкусный пирог с сосисками и сыром

    У суперконденсатора есть еще один очень большой козырь: вес. В Lamborghini Sian вся система — электродвигатель плюс конденсатор — прибавляет в весе всего на 34 килограмма. При этом прирост мощности составляет 33,5 лошадиных силы. Для сравнения, только батарея Renault Zoe (с 136 лошадиными силами) весит около 400 кг.

    Питание электромобилей. За суперконденсаторами будущее?

    В качестве источника хранения энергии для питания электромобилей сейчас в основном рассматривают литий-ионные аккумуляторные батареи. Первый аккумулятор данного типа изготовили в 1991 году. Основная характеристика, которая используется для оценки аккумуляторной батареи – удельная энергоемкость. Для литий-ионных аккумуляторов она около 250 Вт*ч/кг. Это означает, что в течение часа такой аккумулятор массой 1 килограмм может питать, например, электродвигатель мощностью 250 Ватт.

    Если мощность электродвигателя легкового автомобиля будет 55 килоВатт (приблизительно 75 лошадиных сил), тогда для обеспечения 1 часа движения потребуется аккумулятор массой, равной 55.000/250 = 220 кг.

    По сравнению с массой легкового автомобиля это не настолько много, но это только 1 час пробега, за который автомобиль проедет в среднем 60 километров пути. Если решать задачу увеличения пробега «в лоб», то необходимо по-тупому пропорционально увеличивать массу. А это, прежде всего, увеличение стоимости. Поэтому в электромобилях применяют различные электросберегающие технологии, например, во время торможения энергия возвращается в аккумуляторную батарею.

    Недостатки литий-ионных аккумуляторных батарей

    1. Предельное количество циклов заряд-разряд. При последних технологиях количество этих циклов доходит до 10000. Если заряжать-разряжать АКБ пару раз в день, он может прожить лет десять, не более. Сейчас гарантийный срок работы производители определяют около 8 лет. Пока подержанный авто доберется к российским покупателям, АКБ надо будет менять, а это половина стоимости авто.
    2. Необходимость хранения АКБ в заряженном виде. Если довести заряд аккумулятора до нуля, и оставить на хранение в таком состоянии, он быстро теряет свою работоспособность.
    3. Невысокий диапазон рабочих температур. Температуры ниже минус 15 градусов Цельсия крайне опасны для литий-ионных аккумуляторов (как и выше плюс 50-ти).
    4. Опасность больших пиковых нагрузок по току.
    5. Большое время заряда в оптимальном цикле.

    Что есть суперконденсатор?

    Обычный конденсатор представляет собой две пластины проводника, разделенные тонким слоем диэлектрика. Конденсатор предназначен для накапливания заряда, то есть электрической энергии. Основная характеристика конденсатора – емкость. Она прямо пропорциональна площади пластин и обратно пропорциональна расстоянию между пластинами. Единица емкости конденсатора – 1 Фарада. Не вдаваясь в физические тонкости, произвести конденсатор такой огромной (по физическим размерам) емкости до последнего времени было трудным и бесполезным занятием. Конденсатор емкостью 1 Фарада мог занимать место приблизительно, как тумбочка. Если пересчитать емкость в Ватт-часы:

    Получится 0,5*1*3*3/3600 = 0,00125 Вт*час

    То есть на такой «тумбочке» электромобиль и тронуться с места не сможет.

    В начале 60-х Роберт Райтмайер запатентовал модель суперконденсатора. Вместо обычных пластин он предложил делать пористые пластины, у которых площадь на пару порядков больше. А сблизить площади этих неровных пластин он предложил с помощью электролита. Чтобы через электролит не протекал ток, пластины должны иметь разную проводимость: ионную и электронную. Потом эту технологию перекупила японская компания NEC. Практически реализовать такую технологию в полном качестве удалось только с приходом нанотехнологий. Сейчас, например, для покрытия пластин используют материал графен. Пару граммов этого вещества способны покрыть футбольное поле.

    Таким образом, «тумбочка» стала размером «с ноготок».

    На рисунке приведен конденсатор емкостью 10 Фарад. Конденсатор побольше выглядит солиднее. По размерам он, как граненый стакан.

    Преимущества суперконденсаторов

    Так чем же эти «банки» лучше привычных литий-ионных аккумуляторных батарей.

    1. Принцип накопления энергии. В аккумуляторных батареях энергия накапливается химическим способом, поэтому имеет ограниченное количество циклов. В суперконденсаторах идет накопление электрическим методом. Количество циклов заряда/разряда огромно (более 500.000).
    2. Если выбрать электролит большой плотности, рабочая температура может быть от минус 50 до плюс 80-ти градусов Цельсия. Это очень важно для наших широт.
    3. Скорость заряда минимальна. Время на зарядку суперконденсаторной батареи большой емкости предельно малое, менее пяти минут.
    4. Суперконденсатор может в течение короткого времени отдать большую энергию. На нем может быстро тронуться с места даже самосвал.
    5. Суперконденсатор без потерь свойств может очень долго находиться в полностью разряженном состоянии (спать).

    Какие электромобили можно производить, используя суперконденсатор

    Помимо «хороших» свойств суперконденсаторов, есть и «плохие», которые не дают его применять, где попало, прежде всего:

    • малая удельная емкость (приблизительно раз в 10 меньше, чем аккумуляторов);
    • линейная характеристика напряжения на конденсаторе при разряде (в начале разряда около 3-х вольт, посередине – 1,5 Вольта, а нужно для нормального питания — 3);
    • большой саморазряд (за суперконденсатор неделю может разрядиться наполовину);
    • большая стоимость суперконденсатора (тот, что показан на рисунке на 1200 Фарад стоит более 3.000 рублей);
    • невысокое рабочее напряжение (2,7 Вольта).

    Говоря человеческим языком, масса конденсаторов значительно выше, их требуется подключать в схему последовательно, что уменьшает емкость дополнительно, увеличивает стоимость. Кроме этого, необходимы специальные схемы стабилизации питания и распределения напряжения.

    Для примера, размер суперконденсатора для питания смартфона должен быть не менее пресловутого граненого стакана. Не представляется электромобиль с суперконденсаторным «туалетом» на борту. Зато такой «туалет» легко можно спрятать в грузовой машине или электротранспорте. Я не случайно привел такое сравнение. Внешний вид и размеры суперконденсаторной батареи что-то напоминают.

    Масса такой батареи около 1300 килограммов.

    Зарядное устройство, устанавливаемое на конечной остановке, не меньше.

    Такие электробусы сейчас стали привычным транспортным средством в Минске. По характеру движения они напоминают троллейбус, немного дергаются во время старта и торможения. Это не случайно: при торможении они возвращают в батарею до 30-ти процентов энергии.

    Длина маршрута этого 59-го маршрута в Минске около 12-ти километров, он подзаряжается после каждой поездки из одной конечной остановки в другую. Зарядные устройства находятся на конечных остановках. Длится заряд около 3-х минут. Водитель в это время отдыхает. Суперконденсаторные батареи производится под Минском, электробусы – в Минске. Такая небольшая длина пути до подзарядки пока адаптивна только к электротранспорту или, например, к производственным большегрузным машинам. Очень полезно, что суперконденсаторы могут «рвануть» с места груженый транспорт, быстро заряжаются при торможении. Обычный аккумулятор не способен это сделать.

    Преимущество быстрого заряда существенно. Представьте, когда ночью в депо стоит куча электробусов на зарядке. Каждому подай по зарядному устройству. Суперконденсаторы утром по-быстрому зарядил – и в путь. Суперконденсаторы отлично пойдут для питания городских микроавтомобилей с небольшим дневным пробегом.

    Какие перспективы, за чем будущее?

    Я думаю, что будущее за соединением технологий. Это будут или аккумуляторные конденсаторы, или конденсаторные аккумуляторы. Сейчас такие технологии уже используются, например, пластины аккумуляторов покрывают графеном. Обязательно последует развитие технологий, уменьшение массы, увеличение рабочего напряжения, совершенствование элементов защиты. Поживем – увидим. То, что суперконденсаторы будут стоять в электромобилях, очевидный факт.

    В чём плюсы конденсатора в сравнении с аккумулятором?

    • Мгновенно. Ионистор отлично справляется с пиковым пусковым током, накапливая и отдавая энергию практически мгновенно.
    • Быстро. Заряжается не за час-другой, а за считанные секунды (поэтому, например, NASA применяет суперконденсаторы в космосе).
    • Безопасно. Накапливает заряд на твёрдых телах, когда как литиевые батареи — в процессе химических реакций (обычно жидкостных).
    • Надёжно. Коммерческие суперконденсаторы гарантируют 1 миллион циклов заряда, когда как обычные аккумуляторы — в среднем 800-1200 циклов.
    • КПД. Суперконденсаторы отдают энергию с эффективностью порядка 98%.
    • Выносливо. Устойчивость к экстремальным температурам и физическим повреждениям.
    Читать еще:  Как засолить свиную грудинку

    Аккумуляторные батареи для электромобилей

    Для потенциального владельца экологичного транспорта первым пунктом вызывающим интерес, являются аккумуляторные батареи электрокара. Поскольку этот элемент в традиционном понимании автомобиля олицетворяет топливный бак, следовательно, возникает множество аналогий и вопросов какие существуют аккумуляторные батареи и сколько они заряжаются. Аккумуляторные батареи имеют высокую плотность энергии или могут накапливать много электрической энергии, но могут заряжаться и разряжаться часами.

    В большинстве современных электрических машинах используются 4 типа аккумуляторных батарей. Самые распространённые – литий-ионные, алюминий-ионные и литий-серные. Иногда применяют ещё и металл-воздушные, где в качестве металла выступают цинк, литий, натрий, магний или алюминий.

    Литий-ионные АКБ – самый распространённый вариант для установки на электрических автомобилях. Преимуществами таких источников питания считают: высокую плотность накапливаемой энергии; более высокое по сравнению с другими видами АКБ напряжение; небольшой саморазряд – до 6% в месяц, до 20% в год; практически полное отсутствие «эффекта памяти», из-за которого новые батареи требуется «тренировать», используя несколько циклов заряда/разряда; сравнительно большой срок эксплуатации – не меньше 1000 циклов или 10 лет.

    Недостатком Li-Ion батарей является и небольшой температурный диапазон, в котором они работают АКБ (от –20 до +50°C). При использовании за пределами этих значений характеристики батареи значительно ухудшаются – на холоде снижается ёмкость, при жаре аккумулятор может работать нестабильно. Кроме того значительная проблема Li-Ion источника питания – высокий уровень взрывоопасности при повреждении и нарушении герметичности.

    Алюминий-ионные аккумуляторы. Применение алюминия в составе батареи для электромобиля повышает безопасность её использования. Кроме того, такой аккумулятор дешевле обходится при производстве. Использованию таких устройств мешает невысокая производительность катодов и меньшее количество циклов заряда/разряда.

    Принцип действия литий-серных батарей основан на реакции между литием и серой. Их ёмкость примерно вдвое выше по сравнению с аналогичными по размеру литий-ионными батареями. Стоимость изготовления таких аккумуляторов ниже, а рабочий диапазон температур выше, чем у большинства других источников питания электромобилей.

    Недостатком литий-сернистых АКБ является небольшое количество перезарядок (до 60). Это делает батареи непригодными для установки в серийных автомобилях. Однако над устранением недостатков уже работают специалисты нескольких компаний, включая OXIS Energy. Предполагается, что в ближайшее время стоимость поездки на аккумуляторах Li-S будет ниже, чем у современных литий-ионных версий.

    Преимуществами металло-воздушных аккумуляторов являются: небольшой вес, благодаря которому снижается и масса автомобиля; большой пробег электромобилей, которые комплектуются такой батареей; сравнительно доступная стоимость; более простая утилизация по сравнению с литиевыми АКБ.

    Минусами устройства является снижение производительности батареи при низкой температуре. Кроме того, такой батарее нужна система фильтрации, потребляющая почти треть общей мощности. Ещё один серьёзный минус – внезапный выход из строя металл-воздушных аккумуляторов из-за образовавшейся на их поверхности плёнки из пероксида лития. И, наконец, последний минус, из-за которого такие батареи не пользуются большим спросом – небольшое число циклов заряда/разряда – до 50-60.

    Кроме основных технологий производства аккумуляторов электромобилей, существует несколько видов, которые только находятся в разработке. Предполагается, что такие аккумуляторные батареи для электромобиля получат большую ёмкость и срок службы по сравнению с существующими версиями. Одной из таких разработок является аккумулятор на основе кремния и графита, способный накапливать в 5 раз больше энергии без заметного износа.

    Южнокорейскими разработчиками создана технология, вообще не требующая зарядки. Вместо подключения к электросети после у электромобиля заменяется одна алюминиевая пластина, которой хватает на 700 км пробега. Алюминий идёт на переработку и используется повторно.

    Однако работа любого аккумулятора предусматривает химическое превращение энергии, а значит, для реализации процесса заряда требуется определенное время. Сокращение времени заряда зачастую отрицательно сказывается на ресурсе аккумулятора. Решив проблему быстрой зарядки можно также реализовать рекуперацию энергии, при торможении, а, соответственно, повысить экономичность электрокара и его пробег на одной зарядке.

    Перспективным вариантом является применение наряду с аккумуляторами суперконденсаторов, объединенных общей системой управления.

    Особенности применения

    Широкую популярность ионисторы приобрели благодаря стремлению человечества найти новые и более эффективные средства для того, чтобы накапливать и сохранять энергию длительное время. Основным достоинством, определившим его распространение, стала возможность суперконденсатора за короткий период времени импульсно выделять значительную энергию от 0,1 с до 10 с.

    Ионисторы нашли применение в установках и технике, где необходим быстрый и качественный запуск электрооборудования в короткий промежуток времени даже при отрицательных температурах. При этом уменьшаются максимальные токовые нагрузки и приводит к экономии средств. Не исключено и применение для запуска двигателя внутреннего сгорания.

    При соединении конденсаторов в батарею возможно добиться максимальной емкости сопоставимой с аккумуляторной для питания электромобилей. Однако при этом вес источника питания будет значительно выше чем у обычных аккумуляторов. Разработчикам практически удалось решить проблему превышающего веса, для этого необходим графен однако такое возможно пока только в лабораторных условиях.

    В настоящее время одним самых наиболее удачных применений ионисторов стало использование в общественном электротранспорте. В конструкции такой техники применяются устройства бесперебойного питания в которых присутствуют суперконденсаторы.

    Аварийное освещение в которых установлены конденсаторы большой емкости вместо аккумуляторов имеют значительное преимущество перед системами с обычными аккумуляторами.

    Интересно знать! Некоторые зарубежные производители встраивают резервные источники питания на основе ионисторов в светодиодные лампы.

    Питание электромобилей. За суперконденсаторами будущее?

    В качестве источника хранения энергии для питания электромобилей сейчас в основном рассматривают литий-ионные аккумуляторные батареи. Первый аккумулятор данного типа изготовили в 1991 году. Основная характеристика, которая используется для оценки аккумуляторной батареи – удельная энергоемкость. Для литий-ионных аккумуляторов она около 250 Вт*ч/кг. Это означает, что в течение часа такой аккумулятор массой 1 килограмм может питать, например, электродвигатель мощностью 250 Ватт.

    Если мощность электродвигателя легкового автомобиля будет 55 килоВатт (приблизительно 75 лошадиных сил), тогда для обеспечения 1 часа движения потребуется аккумулятор массой, равной 55.000/250 = 220 кг.

    По сравнению с массой легкового автомобиля это не настолько много, но это только 1 час пробега, за который автомобиль проедет в среднем 60 километров пути. Если решать задачу увеличения пробега «в лоб», то необходимо по-тупому пропорционально увеличивать массу. А это, прежде всего, увеличение стоимости. Поэтому в электромобилях применяют различные электросберегающие технологии, например, во время торможения энергия возвращается в аккумуляторную батарею.

    Недостатки литий-ионных аккумуляторных батарей

    1. Предельное количество циклов заряд-разряд. При последних технологиях количество этих циклов доходит до 10000. Если заряжать-разряжать АКБ пару раз в день, он может прожить лет десять, не более. Сейчас гарантийный срок работы производители определяют около 8 лет. Пока подержанный авто доберется к российским покупателям, АКБ надо будет менять, а это половина стоимости авто.
    2. Необходимость хранения АКБ в заряженном виде. Если довести заряд аккумулятора до нуля, и оставить на хранение в таком состоянии, он быстро теряет свою работоспособность.
    3. Невысокий диапазон рабочих температур. Температуры ниже минус 15 градусов Цельсия крайне опасны для литий-ионных аккумуляторов (как и выше плюс 50-ти).
    4. Опасность больших пиковых нагрузок по току.
    5. Большое время заряда в оптимальном цикле.
    Читать еще:  Маринованные арбузы на зиму

    Что есть суперконденсатор?

    Обычный конденсатор представляет собой две пластины проводника, разделенные тонким слоем диэлектрика. Конденсатор предназначен для накапливания заряда, то есть электрической энергии. Основная характеристика конденсатора – емкость. Она прямо пропорциональна площади пластин и обратно пропорциональна расстоянию между пластинами. Единица емкости конденсатора – 1 Фарада. Не вдаваясь в физические тонкости, произвести конденсатор такой огромной (по физическим размерам) емкости до последнего времени было трудным и бесполезным занятием. Конденсатор емкостью 1 Фарада мог занимать место приблизительно, как тумбочка. Если пересчитать емкость в Ватт-часы:

    Получится 0,5*1*3*3/3600 = 0,00125 Вт*час

    То есть на такой «тумбочке» электромобиль и тронуться с места не сможет.

    В начале 60-х Роберт Райтмайер запатентовал модель суперконденсатора. Вместо обычных пластин он предложил делать пористые пластины, у которых площадь на пару порядков больше. А сблизить площади этих неровных пластин он предложил с помощью электролита. Чтобы через электролит не протекал ток, пластины должны иметь разную проводимость: ионную и электронную. Потом эту технологию перекупила японская компания NEC. Практически реализовать такую технологию в полном качестве удалось только с приходом нанотехнологий. Сейчас, например, для покрытия пластин используют материал графен. Пару граммов этого вещества способны покрыть футбольное поле.

    Таким образом, «тумбочка» стала размером «с ноготок».

    На рисунке приведен конденсатор емкостью 10 Фарад. Конденсатор побольше выглядит солиднее. По размерам он, как граненый стакан.

    Преимущества суперконденсаторов

    Так чем же эти «банки» лучше привычных литий-ионных аккумуляторных батарей.

    1. Принцип накопления энергии. В аккумуляторных батареях энергия накапливается химическим способом, поэтому имеет ограниченное количество циклов. В суперконденсаторах идет накопление электрическим методом. Количество циклов заряда/разряда огромно (более 500.000).
    2. Если выбрать электролит большой плотности, рабочая температура может быть от минус 50 до плюс 80-ти градусов Цельсия. Это очень важно для наших широт.
    3. Скорость заряда минимальна. Время на зарядку суперконденсаторной батареи большой емкости предельно малое, менее пяти минут.
    4. Суперконденсатор может в течение короткого времени отдать большую энергию. На нем может быстро тронуться с места даже самосвал.
    5. Суперконденсатор без потерь свойств может очень долго находиться в полностью разряженном состоянии (спать).

    Какие электромобили можно производить, используя суперконденсатор

    Помимо «хороших» свойств суперконденсаторов, есть и «плохие», которые не дают его применять, где попало, прежде всего:

    • малая удельная емкость (приблизительно раз в 10 меньше, чем аккумуляторов);
    • линейная характеристика напряжения на конденсаторе при разряде (в начале разряда около 3-х вольт, посередине – 1,5 Вольта, а нужно для нормального питания — 3);
    • большой саморазряд (за суперконденсатор неделю может разрядиться наполовину);
    • большая стоимость суперконденсатора (тот, что показан на рисунке на 1200 Фарад стоит более 3.000 рублей);
    • невысокое рабочее напряжение (2,7 Вольта).

    Говоря человеческим языком, масса конденсаторов значительно выше, их требуется подключать в схему последовательно, что уменьшает емкость дополнительно, увеличивает стоимость. Кроме этого, необходимы специальные схемы стабилизации питания и распределения напряжения.

    Для примера, размер суперконденсатора для питания смартфона должен быть не менее пресловутого граненого стакана. Не представляется электромобиль с суперконденсаторным «туалетом» на борту. Зато такой «туалет» легко можно спрятать в грузовой машине или электротранспорте. Я не случайно привел такое сравнение. Внешний вид и размеры суперконденсаторной батареи что-то напоминают.

    Масса такой батареи около 1300 килограммов.

    Зарядное устройство, устанавливаемое на конечной остановке, не меньше.

    Такие электробусы сейчас стали привычным транспортным средством в Минске. По характеру движения они напоминают троллейбус, немного дергаются во время старта и торможения. Это не случайно: при торможении они возвращают в батарею до 30-ти процентов энергии.

    Длина маршрута этого 59-го маршрута в Минске около 12-ти километров, он подзаряжается после каждой поездки из одной конечной остановки в другую. Зарядные устройства находятся на конечных остановках. Длится заряд около 3-х минут. Водитель в это время отдыхает. Суперконденсаторные батареи производится под Минском, электробусы – в Минске. Такая небольшая длина пути до подзарядки пока адаптивна только к электротранспорту или, например, к производственным большегрузным машинам. Очень полезно, что суперконденсаторы могут «рвануть» с места груженый транспорт, быстро заряжаются при торможении. Обычный аккумулятор не способен это сделать.

    Преимущество быстрого заряда существенно. Представьте, когда ночью в депо стоит куча электробусов на зарядке. Каждому подай по зарядному устройству. Суперконденсаторы утром по-быстрому зарядил – и в путь. Суперконденсаторы отлично пойдут для питания городских микроавтомобилей с небольшим дневным пробегом.

    Какие перспективы, за чем будущее?

    Я думаю, что будущее за соединением технологий. Это будут или аккумуляторные конденсаторы, или конденсаторные аккумуляторы. Сейчас такие технологии уже используются, например, пластины аккумуляторов покрывают графеном. Обязательно последует развитие технологий, уменьшение массы, увеличение рабочего напряжения, совершенствование элементов защиты. Поживем – увидим. То, что суперконденсаторы будут стоять в электромобилях, очевидный факт.

    Применение суперконденсаторов

    Системы аварийного освещения являются тем местом, где использование суперконденсаторов вместо аккумуляторов дает ощутимый выигрыш. В самом деле, именно для этого применения характерна неравномерность разрядки. Кроме этого, желательно, чтобы зарядка аварийного светильника происходила быстро, и чтобы используемый в нем резервный источник питания имел большую надежность. Источник резервного питания на основе суперконденсатора можно встроить непосредственно в светодиодную лампу T8. Такие лампы уже выпускаются рядом китайских фирм.


    Грунтовый светодиодный светильник с питанием
    от солнечных батарей, накопление энергии
    в котором осуществляется в суперконденсаторе

    Как уже отмечалось, развитие суперконденсаторов во многом связано с интересом к альтернативным источникам энергии. Но практическое применение пока ограничено светодиодными светильниками, получающими энергию от солнца.

    Активно развивается такое направление как использование суперконденсаторов для запуска электрооборудования.

    Суперконденсаторы способны дать большое количество энергии в короткий интервал времени. Запитывая электрооборудование в момент пуска от суперконденсатора, можно уменьшить пиковые нагрузки на электросеть и в конечном счете уменьшить запас на пусковые токи, добившись огромной экономии средств.

    Соединив несколько суперконденсаторов в батарею, мы можем достичь емкости, сопоставимой с аккумуляторами, используемыми в электромобилях. Но весить эта батарея будет в несколько раз больше аккумулятора, что для транспортных средств неприемлемо. Решить проблему можно, используя суперконденсаторы на основе графена, но они пока существуют только в качестве опытных образцов. Тем не менее, перспективный вариант знаменитого «Ё-мобиля», работающий только от электричества, в качестве источника питания будет использовать суперконденсаторы нового поколения, разработка которых ведется российскими учеными.

    Суперконденсаторы также дадут выигрыш при замене аккумуляторов в обычных машинах, работающих на бензине или дизельном топливе — их использование в таких транспортных средствах уже является реальностью.

    Пока же самым удачным из реализованных проектов внедрения суперконденсаторов можно считать новые троллейбусы российского производства, вышедшие недавно на улицы Москвы. При прекращении подачи напряжения в контактную сеть или же при «слетании» токосъемников троллейбус может проехать на небольшой (порядка 15 км/ч) скорости несколько сотен метров в место, где он не будет мешать движению на дороге. Источником энергии при таких маневрах для него является батарея суперконденсаторов.

    В общем, пока суперконденсаторы могут вытеснить аккумуляторы только в отдельных «нишах». Но технологии бурно развиваются, что позволяет ожидать, что уже в ближайшем будущем область применения суперконденсаторов значительно расширится.

    Ссылка на основную публикацию
    Статьи c упоминанием слов:
    Adblock
    detector