0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Фланцевые шарикоподшипники

Содержание

Чем шариковые подшипники с фланцем отличаются от других типов шариковых подшипников?

Фланцевые шарикоподшипники на самом деле не являются отдельным типом подшипников. Аналогично с тем, как шариковые подшипники изготавливаются в герметичном и открытом исполнении, подшипники могут быть фланцевыми и ровными. Фланец является еще одним вариантом предоставляемым производителем инженеру-конструктору. Фланец – это удлинение или выступ на внешнем кольце подшипника, предназначенный для облегчения монтажа и позиционирования подшипника.

Зачем нужен шариковый подшипник с фланцем?


Открытый подшипник без фланца

Фланцевые подшипники часто применяются в случае, если необходима фиксация подшипника на месте. Инженер-проектировщик хочет зафиксировать в осевом направлении, вдоль вала или перпендикулярно валу, в радиальном направлении, в зависимости от его применения. В этом случае используется фланцевый подшипник, чтобы противостоять осевому выталкиванию. Если имеется осевая нагрузка или осевой нажим на подшипник, фланец предотвратит перемещение подшипника в осевом направлении.

Преимущества использования шариковых подшипников с фланцем

Любое применение, которое требует установки подшипника в зоне с высокой вибрацией, а также любого применения с высокими осевыми нагрузками, требует установки фланцевого подшипника. «Хорошим примером является использование таких подшипников в автомобильных приложениях, где все компоненты должны выдерживать высокие вибрации».

Инженер-проектировщик должен иметь возможность выбирать для сборки подшипник, который сможет выдерживать вибрации и высокие температуры. Следовательно, применение подшипника для монтажа на клей или посадкой в натяг в автомобильных приложениях часто недостаточны, потому для обеспечения долговечности и надежности подшипника выбор сводится к фланцевому подшипнику.

Фланцевый подшипник сохраняет свое положение, и может выдерживать агрессивную среду и при высоких вибрациях внутри автомобиля. При необходимости сборка фланцевого подшипника может также включать в себя дополнительное крепление, такое как крепежную скопу. Кроме того, работа в условиях высоких температур также потребует выбора фланцевого подшипника. Например, при использовании в вытяжных зонтиках, в которых температура может достигать 180°С, кроме того в конструкции вентиляции присутствуют материалы с разным коэффициентом температурного расширения такие как материал корпуса шарикоподшипника и вала. «Например, стальной подшипник вдавливается в алюминиевый корпус; корпус может расширяться быстрее, чем стальной корпус подшипника, тем самым снижая нагрузку на подшипник. Использование фланцевого подшипника в таком применении будет удерживать подшипник на месте – в осевом направлении. Применение фланцевых подшипников в этом применении позволяет удерживать подшипник на месте – в осевом направлении – независимо от дисбаланса в скорости расширении».


Открытый фланцевый подшипник

Фланцевые подшипники наиболее часто используются в ненагруженных применениях, таких как оборудование для обработки пищевых продуктов, конвейеры, обработке материалов, ременных приводах в системах вентиляции и отопления, медицинской техники и различных других легких промышленных применений.

Установка подшипников с фланцем


Как только принято решение о необходимости использования фланцевого подшипника его установка не является технически сложной. Недостатком выбора фланцевого подшипника является то, что многие типы фланцевых подшипников дороги в производстве, что увеличивает стоимость разработки конструкции.

Заключительные рекомендации

В заключение, Нуфер говорит, что редко можно встретить приложение, в котором требуется установка миниатюрного фланцевого подшипника:

«Для проектировщика важно обсудить все варианты использования подшипника с поставщиком, так как есть вероятность увеличения затрат за счет выбора фланцевого подшипника. Инженер-проектировщик должен убедиться, что он не переоценил сложность конструкции, и использование фланцевых подшипников действительно оправдано. Проектировщик может обнаружить, что для установки подшипников есть менее дорогие варианты. Тем не менее, существуют ситуации, в которых использования фланцевых подшипников является единственным выбором. Поэтому обязательно обсудите с экспертом свое применение подшипника, перед тем как сделать окончательное решение».

Какой продукт нам подходит

Ступичные подшипники рекомендуется обрабатывать исключительно с помощью качественных смазочных материалов. В противном случае деньги и время будут потрачены впустую, так как подшипник попросту придётся менять.

Какой должна быть смазка:

  1. Она не должна менять свою консистенцию при повышении температуры. Подшипники ступицы испытывают серьезную нагрузку, они работают при высоких температурах, этот узел может нагреваться до 100-200 градусов. Поэтому смазочный материал должен сохранять свои характеристики в столь непростых условиях эксплуатации.
  2. Материал должен хорошо работать при минусовых температурах. Если смазка будет очень густой в морозную погоду, это будет создавать препятствие свободному вращению роликов либо шариков подшипника, что несомненно приведет к формированию задиров. В итоге срок службы ступичного подшипника не продлится, а наоборот сократится. Смазывающее средство должно выполнять свои задачи даже при температуре 35-40 градусов ниже нуля.
  3. В идеале подобрать продукт, консистенция которого меняется, но делает это правильно. Когда температура узла существенно повышается смазка должна быть более жидкой, но не растекаться. Это будет гарантировать достаточное смазывание элементов. При снижении нагрузки смазывающее вещество должно становиться более густым.
  4. Смазка для применения в ступице не должна бояться контакта с водой. Колеса автомобиля нередко работают во влажных условиях, поэтому выбранное вами средство должно обеспечивать высокий уровень защиты деталей от влияния коррозии.
  5. В составе продукта не должно быть компонентов, которые могут повредить детали из полимеров и резиновые изделия. Иначе вы продлите срок службы подшипника, но в то же время потратите средства на преждевременную замену сальников и пыльников.

Консистентные смазки, которые используются в автомобилях

Производители предлагают огромное количество смазок, которые подходят для продления эксплуатационного срока подшипников качения. Цветовая палитра очень широкая, но этот показатель в нашем случае абсолютно не важен. Необходимо уделить внимание характеристикам и наименованию вещества.

Электропроводящие смазки

В большинстве случаев такие вещества применяют для работы с электрическими компонентами автомобилей. Например, они позволяют смазывать различные соединения и клеммы. Особенность таких продуктов – высокий уровень защиты деталей из металла от негативного влияния коррозионных процессов. В связи с этим их также иногда применяют для смазки подшипников ступицы.

Консервирующие смазки

Это один из простейших продуктов, обеспечивающий неплохую защиту. Такой тип смазок хоть и рекомендуют для использования с подшипниками, он отличается непродолжительным сроком использования. При контакте с водой эти смазывающие вещества легко смываются. Уже из названия понятно, что они гораздо лучше справляются с обычной консервацией элементов.

Литолы (литиевые смазки)

Основной компонент всех продуктов этой группы – литий, к которому добавляют органические кислоты. Также используется загуститель, способствующий удобному нанесению смазки.

Преимущества литолов для ступичных подшипников:

  • Большой срок эксплуатации. Отзывы свидетельствуют о том, что смазка хорошо справляется со своими задачами даже после внушительных пробегов (свыше 80-100 тыс. км). Но мы советуем не экономить и менять её чаще.
  • Снижение нагрузок на узел. Смазывающие вещества этого типа заметно уменьшают нагрузки на детали, что продлевает срок их эксплуатации до максимального показателя.

Недостатки литолов:

  • Органические кислоты. Наличие этих компонентов может привести к преждевременному износу полимерных деталей.
  • Средний уровень защиты от коррозии. По сравнению с иными группами смазывающих продуктов литиевые смазки не гарантируют надёжную защиту в этом плане. В случае разгерметизации корпуса желательно как можно быстрее заменить литол.

Производителей литиевых смазок существует немало. Один из самых популярных вариантов – Литол-24, он есть во всех автомобильных магазинах. Конечно, можно приобрести и аналоги иностранных производителей, но такая покупка не всегда оправдывает себя. Литол-24 способен существенно продлить эксплуатационный срок узлов.

Молибденовые смазки

В основе таких веществ лежит дисульфид молибдена, именно их рекомендуют применять специалисты.

Преимущества молибденовых средств:

  • Отлично справляются с силами трения, продлевая срок службы подшипниковых механизмов.
  • Срок службы продукта – около 100 000 км, а это примерно столько же, как и у подшипников. Одноразовая обработка поможет надолго забыть о проблеме.
  • Качественная защита от коррозии. Применение смазки формирует на поверхности детали пленку, в результате чего сводится к минимуму риск контакта механизма или узла с окислителями.

Недостатки смазок на основе дисульфида молибдена:

  • Серьезный минус – низкая устойчивость к воздействию влаги. Корпус ступичного подшипника должен сохранять герметичность, в противном случае смазку придётся заменить.
  • Быстрое загрязнение смазывающего вещества.
  • В составе смазки присутствуют абразивные вещества, которые негативно влияют на её качество. В итоге через некоторое время продукт уже не может преодолевать трение.

Отзывы показывают, что средства на основе молибдена не способны демонстрировать хорошие показатели при эксплуатации в условиях высоких температур. При агрессивной манере вождения необходимо выполнять регулярную проверку подшипников.

Из российских вариантов стоит упомянуть Фиол и ШРУС-4, они отличаются низкой ценой и неплохими характеристиками. Среди иностранных производителей хочется выделить разработки компаний Mobil, Texaco, Esso и Liqui Moly.

Читать еще:  Как сделать освежитель для унитаза своими руками

Высокотемпературные смазки

Особенность этих продуктов в том, что они изначально разработаны для использования при высоких температурах и серьезных нагрузках. В основе смазывающих веществ этого сегмента лежат никелевые и медные порошкообразные соединения.

Плюсы:

  • Обработка подшипников такой смазкой позволяет использовать их в экстремальных температурных режимах.
  • Средство отлично справляется в случаях экстренного торможения.
  • Обладает устойчивостью к воздействию воды.
  • Защищает механизмы от окисления и формирования коррозии (этому способствуют специальные присадки в составе смазки).

Специалисты и реальные пользователи отмечают, что высокотемпературные смазки не имеют явных недостатков. Один из самых интересных продуктов на рынке – МС BLUE 1510. Мы решили даже сделать небольшой обзор этой замечательной отечественной разработки.

Регулировка сцепления на автомобилях Лада Веста

Так как узел постоянно зацепляется/расцепляется, ему нужна точная настройка. Регулировка производится на месте во время установки. Ведомый диск центрируется, корзина, выжимной подшипник тоже – они должны точно входить в шлицы маховика и первичного вала коробки переключения передач.

В дальнейшем можно отрегулировать положение троса сцепления, чтобы педаль была мягче/тверже, чтобы она лучше откликалась на команду (в процессе эксплуатации трос может вытягиваться).

На Ладе с роботизированной КПП регулируется сцепление специальными программами. Адаптацию можно пройти только у официального дилера. Однако, и срок службы сцепления АМТзначительно больше, чем у МКПП.

Типы корпусов

Существует определенная классификация корпусов для подшипников. Каждый тип отличается своим предназначением, способом крепления, конфигурацией и размером. Стандартными сегодня выступают такие разновидности:

  • стационарные цельные;
  • стационарные разъемные;
  • фланцевые.

Цельный стационарный тип корпуса изготавливают из чистого никеля, что делает его более жестким и простым. Осевая посадка подшипников в корпус имеет сложный осевой тип монтажа. Поэтому такую разновидность используют в тихоходных механизмах, которые обладают небольшим диаметром вала.

Разъемный стационарный корпус делают из серого чугуна. Он состоит из крышки и основы. Эти элементы корпуса соединяются болтами. Такая конструкция позволяет легко поменять подшипник при его износе, сделать вторичную расточку вкладыша, а также отрегулировать зазор. Это частый тип корпуса в машиностроении.

Фланцевый корпус похож на предыдущий тип. Он состоит из основания и крышки, соединенных болтами. Его применяют для очень требовательных деталей. Он служит опорой как для концевого, так и для сквозного вала.

Опыт сборки гироскутера собственными силами

Приступая к работе, решил сначала опробовать концепцию и определиться с необходимой мощность электромеханических узлов, чтобы обосновать дальнейшие вложения в комплектующие.

Первая версия (сигвэй)

С механической точки зрения вариант сигвэя казался более простым (отсутствует нагруженный средний поворотный узел), кроме того все, что нашел на youtube это самоделки именно сигвэев.

Не смотря на то, что имею достаточный опыт в программировании и работе с контроллерами решил софт самостоятельно не писать, а найти наиболее готовые решения. Кроме того, я редко могу поддержать свою мотивацию более одного месяца, а отладка работы софта с электромеханическими узлами редко заканчивается абсолютной победой, чаще компромиссом, и мысль о том, что совершенство не достигнуто меня бы червоточила.

В итоге выбор пал на работу Ovaltine’s Segway Clone (исходники есть на GitHub). Данный проект мне показался наиболее зрелым и поддерживающим железо, которое у меня есть (Arduino, MPU-6050, драйвера моторов с 2-мя и 3-мя управляющими сигналами на канал). Проект исчерпывающе прокомментирован, что позволяет не углубляться в анализ нюансов и как результат не догадываться о недочетах.

Недолго оттягивая, была сляпана платформа для испытаний:

Алюминиевая пластина толщина 12мм

Ось диаметром 14мм – направляющая от матричного принтера

Скобы строительные диаметр 14мм

Колеса – передние от инвалидной коляски (диаметр 8 дюймов, подшипники встроены).

Моторы и планетарные редукторы от шуруповертов на 18В

Шестерни передачи на колеса от электромясорубок

Аккумулятор 12В 5Ач Li-pol (остался после спада тренда квадракоптеростроения)

Датчик 10DOF MPU-6050 (остались после спада тренда квадракоптеростроения)

Уголки, болты и гайки

По доступности можно отметить, что п.1,3,4,5,6,11 были куплены на местном рынке.

Отдельно следует отметить, что моторы с редукторами мне продали, разобрав на моих изумленных глазах, рабочий шуруповерт (450р мотор, 500р редуктор с ограничителем момента). На мой вопрос это окупается? Мне продавец ответил, что половину закупочной цены данного шуруповерта уже отбил на продаже аккумулятора.

Были затруднения с приобретением драйверов моторов (до 30А). Был заказан двухканальный драйвер vnh2SP30 на eBay за 600р, но так как ждать не хотелось, уже через неделю были куплены два одноканальных драйвера vnh3SP30 в «Чип и Дип» в разных городах (Краснодар, Волгоград) благодаря поездке на море.

После прошивки и калибровки гироскопа все заработало практически без проблем. Пришлось перекинуть на одном драйвере сигналы управления, потому что колесо крутилось в ненужную сторону, и выяснилось, что шестерни на валах редукторов проскальзывают несмотря на клей.

С шестерней вопрос решил следующим образом: гравером с отрезным диском нанес насечки продольно оси вала глубиной 0,5мм и длинной равной ширине одеваемой шестерни. Надел шестерню и забил в насечки обрезки скрепки (типа микрошпонки). Следом проявилось новое слабое место – недостаточное прижимное усилие шестерни редуктора к шестерне колеса. Зная, что это всего лишь промежуточный прототип не стал решать проблему фундаментально, а просто стянул кабельной стяжкой оси колеса и вала редуктора. После 20 минут покатушек капроновая стяжка не нагрелась хотя вал редуктора в отличие от вала колеса подвижный.

Следует отметить, что передача «вал редуктора – колесо» имеет высокие требования к выдерживаемому моменту. Передаточное число здесь составило всего 5:1. Планетарный редуктор шуруповерта имел число 1:25. При напряжении 12В скорость передвижения на 8 дюймовом колесе была безопасной (от 5-8км/ч). Также остался запас по напряжению.

Важно! Драйверы vnh2 до 14В.

Управление поворотами было сделано вынесением потенциометра в руку.

В результате потраченных усилий, денег и времени было проверена работоспособность и достаточность мощности всего устройства и обоснованы дальнейшие вложения указанных ресурсов. Конечно, можно было бы, и рассчитать все заранее, исходя из требуемого момента на колесе, но разброс реальных параметров двигателей от шуруповертов и малый выбор среди тех продавцов, кто разберет для тебя два конкретных шуруповерта, делает это бессмысленным.

Вторая версия (гироскутер)

Усложнение конструкции до гироскутера неизбежно ведет к добавлению силовых узлов, привносящих вес, чего хотелось избежать, чтобы «не таскать велосипед на себе». Анализ весов комплектующих привел к выводу, что уменьшить вес можно только несущей пластины. И действительно пластина алюминия в 6мм (взамен 12мм) оказалась в полной мере удовлетворяющей ощущениям твердой основы под ногами (вес нагрузки около 80кг).

В связи с необходимостью установки подшипника в средний узел соосно с колесами потребовалось поднять ось колес от платформы, что вкупе с разделением полуосей приводит к возникновению крутящих моментов на полуоси (излом). Пришлось отказаться от слабых скоб, которые начали подымать лапки вверх.

Анализ доступных подшипников с наименьшей высотой привел к выбору игольчатых подшипников (цилиндрических с внутренним диаметром 17мм и внешним 23мм). Здесь стало ясно, что ось среднего узла будет по диаметру больше чем полуоси колес. Мне не посчастливилось найти ось точно под подшипник. Пришлось обратиться к токарю с целью проточить строительный болт до нужного диаметра и сделать проточки для стопорных колец (вместо колец, впоследствии, была использована вязальная проволока для арматуры). Стопорные кольца понадобились, т.к. у данного подшипника отсутствует внутренняя оправа и цилиндры катаются по поверхности оси (т.е. он не напрессовывается).

Далее осталось только придумать узлы крепления, обеспечивающие соосность трех осей (две полуоси колес и толстая ось среднего узла). Это требование необходимо выполнить, чтобы не было неприятного ощущения на стопах, что их поворачивают туда, куда не требуется.

Решение пришло само: зачем искать специфичные крепления, если можно сделать их самому. Была куплена пластина алюминия толщиной 16 мм, порезана торцовочной пилой (диском с отрицательным углом) на одинаковые прямоугольники и которые были просверлены ступенчатым сверлом до нужных диаметров. Требования к точности сверления высокие только для двух оправ с подшипниками. Остальные (6 шт.) могут иметь разумные допуски, тем более, что фиксация неподвижных осей в оправах выполняется расклиниванием оправ.

Силовые провода были взяты из гибкого провода для проводки 2х2,5мм. Часть проводки удалось выполнить без пайки на пружинных и винтовых клеммах, но полностью от пайки отказаться не удалось.

Угол разбега полуплатформ было решено определять потенциометром с применением механизма тяги. Подвижная средняя ось и ось потенциометра были сориентированы параллельно. В подвижную среднюю ось был вкручен тонкий винт с головкой типа «ушка иглы». Вылет винта использовался как рычаг. На потенциометр была одета ручка-крутилка также с удлиненным винтом с ушком. Ушки винтов были связаны подвижной тягой из проволоки.

Читать еще:  Браслет Шамбала своими руками

только самы зоркие найдут потенциометр с тягой

Очередное испытание показало, что одна полуплатформа оснащенная гироскопом, а вторая связана с первой через потенциометр дают ассиметричную реакцию при повороте вправо и влево. Грубо прикинув в уме, это стало вполне объяснимо. К примеру,

Поворот направо (Левая наклонена ; Правая ровно __)

Угол левой платформы с гироскопом +5 значит скорость на колесах: Л=5 П=5. Угол правой платформы с потенциометром -5 от первой (т.е. нога горизонтально ожидается поворот направо) скорость на колеса Л=5-(-5)=10; П=5+(-5)=0. Итог — поворот вокруг правого колеса.

Поворот налево (Левая __; Правая )

Угол левой платформы с гироскопом 0 (горизонатльно) значит скорость на колесах: Л=0 П=0. Угол правой платформы с потенциометром +5 от первой (ожидается поворот налево) скорость на колеса Л=0+(-5)=-5; П=5-(-5)=5. Итог – поворот на месте вокруг себя.

Версия три (два контроллера)

Не долго думая и оставаясь верным концепции не разбираться с ПО, было решено на каждую полуплатформу поставить свой гироскоп и контроллер (благо этого добра у меня осталось достаточно).

Таким образом, каждый Arduino реально управляет только одним колесом по показаниям своего гироскопа. Потенциометры заменились в ПО обнулением переменной после нормирования результатов вызова analogRead (с контакта потенциометра), т.к. руль больше не нужен.

Также потребовалось немного успокоить ПИД регулятор уменьшением Кп.

Более адекватная версия испытывалась дольше, принося неописуемую радость детям, и выявила рецидивы в креплении шестерни к валу редуктора. Пришлось отказаться от «микрошпонок» и просверлить насквозь капроновую шестерню (в нерабочей области) и вал для установки штифта. После недели активного использования за такое решение жалеть не пришлось.

Данная версия работает наиболее адекватно, но включение активности, которое происходит после выравнивания полуплатформ (захват горизонта после 3 секунд), происходит независимо. Т.е. если первая полуплатформа после включения была выравнена раньше, то и активизируется балансер раньше. Это практически не заметно, но вытекает логически из ПО.

Искренняя радость. фотографа.

По результатам испытания функциональности на детях было решено одеть это все в корпус, что бы скрыть от непосвященных пользователей секреты электромеханической магии.

Лучше всего для корпуса подошел плоский ПВХ (204мм) воздуховод. Белый цвет выглядел не кошерно, в итоге транспортное средство было обклеено пленкой черного цвета под углеволокно. Вес всего устройства, благодаря пластиковым ободам колес, составил около 5 кг. В таком виде и было передано в пользование.

Фотки с корпусом, к сожалению, не осталось.

Собственные наблюдения, не стоит гнаться за скоростью реакции следования гиро за отклонением тела. Для человека это не свойственно, он сам регулирует равновесие. Чем медленнее реакция гиро (разгон 1,5-3 сек до максимальной скорости — оптимально) тем комфортнее наезднику. Для хорошей работы регулятору важнее не столько вес, а сколько рост пассажира (по сути это перевернутый маятник). Для моей конфигурации дети оказались по разные стороны критической границы роста — 135см…125см.

Принципиальное различие с промышленными гиро – это шум моторов и редукторов. Этот вопрос еще буду изучать, но учитывая, что все создано вокруг «планетарок» шуруповертов перспектива не светлая.

Статья написана 5 лет назад. Теперь уже гироскутерами никого не удивишь.

Вот что осталось на текущий момент от поделки.

. и бесценный опыт мотивации «встать с дивана»!

Чем шариковые подшипники с фланцем отличаются от других типов шариковых подшипников?

Фланцевые шарикоподшипники на самом деле не являются отдельным типом подшипников. Аналогично с тем, как шариковые подшипники изготавливаются в герметичном и открытом исполнении, подшипники могут быть фланцевыми и ровными. Фланец является еще одним вариантом предоставляемым производителем инженеру-конструктору. Фланец – это удлинение или выступ на внешнем кольце подшипника, предназначенный для облегчения монтажа и позиционирования подшипника.

Зачем нужен шариковый подшипник с фланцем?


Открытый подшипник без фланца

Фланцевые подшипники часто применяются в случае, если необходима фиксация подшипника на месте. Инженер-проектировщик хочет зафиксировать в осевом направлении, вдоль вала или перпендикулярно валу, в радиальном направлении, в зависимости от его применения. В этом случае используется фланцевый подшипник, чтобы противостоять осевому выталкиванию. Если имеется осевая нагрузка или осевой нажим на подшипник, фланец предотвратит перемещение подшипника в осевом направлении.

Преимущества использования шариковых подшипников с фланцем

Любое применение, которое требует установки подшипника в зоне с высокой вибрацией, а также любого применения с высокими осевыми нагрузками, требует установки фланцевого подшипника. «Хорошим примером является использование таких подшипников в автомобильных приложениях, где все компоненты должны выдерживать высокие вибрации».

Инженер-проектировщик должен иметь возможность выбирать для сборки подшипник, который сможет выдерживать вибрации и высокие температуры. Следовательно, применение подшипника для монтажа на клей или посадкой в натяг в автомобильных приложениях часто недостаточны, потому для обеспечения долговечности и надежности подшипника выбор сводится к фланцевому подшипнику.

Фланцевый подшипник сохраняет свое положение, и может выдерживать агрессивную среду и при высоких вибрациях внутри автомобиля. При необходимости сборка фланцевого подшипника может также включать в себя дополнительное крепление, такое как крепежную скопу. Кроме того, работа в условиях высоких температур также потребует выбора фланцевого подшипника. Например, при использовании в вытяжных зонтиках, в которых температура может достигать 180°С, кроме того в конструкции вентиляции присутствуют материалы с разным коэффициентом температурного расширения такие как материал корпуса шарикоподшипника и вала. «Например, стальной подшипник вдавливается в алюминиевый корпус; корпус может расширяться быстрее, чем стальной корпус подшипника, тем самым снижая нагрузку на подшипник. Использование фланцевого подшипника в таком применении будет удерживать подшипник на месте – в осевом направлении. Применение фланцевых подшипников в этом применении позволяет удерживать подшипник на месте – в осевом направлении – независимо от дисбаланса в скорости расширении».


Открытый фланцевый подшипник

Фланцевые подшипники наиболее часто используются в ненагруженных применениях, таких как оборудование для обработки пищевых продуктов, конвейеры, обработке материалов, ременных приводах в системах вентиляции и отопления, медицинской техники и различных других легких промышленных применений.

Установка подшипников с фланцем


Как только принято решение о необходимости использования фланцевого подшипника его установка не является технически сложной. Недостатком выбора фланцевого подшипника является то, что многие типы фланцевых подшипников дороги в производстве, что увеличивает стоимость разработки конструкции.

Заключительные рекомендации

В заключение, Нуфер говорит, что редко можно встретить приложение, в котором требуется установка миниатюрного фланцевого подшипника:

«Для проектировщика важно обсудить все варианты использования подшипника с поставщиком, так как есть вероятность увеличения затрат за счет выбора фланцевого подшипника. Инженер-проектировщик должен убедиться, что он не переоценил сложность конструкции, и использование фланцевых подшипников действительно оправдано. Проектировщик может обнаружить, что для установки подшипников есть менее дорогие варианты. Тем не менее, существуют ситуации, в которых использования фланцевых подшипников является единственным выбором. Поэтому обязательно обсудите с экспертом свое применение подшипника, перед тем как сделать окончательное решение».

Повреждения подшипников

Главной проблемой подшипников является прочность. Зачастую она связана с начальной нагрузкой, которую всегда трудно установить точно. Момент сопротивления преднагруженного подшипника в период приработки быстро снижается. Поэтому начальную нагрузку можно контролировать только у новых подшипников, однако, повреждения могут происходить и при маленьких нагрузках, так как шарики и ролики имеют склонность к скольжению вместо качения.

В обычных условиях правильно выбранный и правильно эксплуатирующийся подшипник имеет 90% шансов проработать в течение назначенного срока службы, и 10% шансов выйти из строя в результате процессов выкрашивания, которые происходят в условиях естественной деградации. Множество подшипников преждевременно выходят из строя по причине плохой смазки (43% подшипников) или плохого монтажа (27% подшипников). Даже лучшая подшипниковая сталь не может компенсировать ни недостатки смазки, ни значительной деформации валопровода. Дефекты в смазке влекут за собой перегрев подшипника, что может стать причиной заклинивания подшипника. В предельных ситуациях смазка в подшипнике может даже воспламениться. Явная причина внешних повреждений подшипников: плохая смазка, плохой монтаж, недостатки уплотнения, плохие условия эксплуатации, Повреждения связанные с собственно подшипником: плохое качество подшипниковой стали, неточная внутренняя геометрия, дефектные сепараторы и уплотнения подшипника. Внешние причины вызывают более 90% преждевременных отказов подшипников.

К сожалению выяснить причину разрушения подшипника нелегко: если инцидент является типичным, для специалиста будет несложно дать заключение по результатам исследования мелких осколков подшипника. При серьезном инциденте необходимо следовать методологии стандартной экспертизы:

Далее необходимо проанализировать главные причины аварии или разрушения подшипников.

Усталостное выкрашивание (расслоение) подшипника

Расслоение подшипника — естественная причина разрушения подшипников правильно смонтированных и используемых. Если давление Гертца не превышает 2000 N/mm, подшипники имеют срок службы, практически обусловленный только смазкой и чистотой. В действительности давление между элементами качения и кольцами обычно составляет от 3 000 до 3 500 N/mm и усталостные повреждения подшипника, чередуясь с напряжениями на сдвиг, приводят к расслоению металла. Все исследования подтверждают пагубное влияние на усталость подшипников неметаллических включений в сталь: нерастворимые карбиды, остатки окислов и сернистых соединений, шлаки, попавшие при плавке…

Читать еще:  Слоненок из разноцветных ниток

Выкрашивание (расслоение) — процесс длительный, который ускоряется, в той или иной степени, после появления первых трещинок. Локализованное и преждевременное выкрашивание характеризует такие аномалии, как плохой монтаж, перегрузка, дефекты вала, плохая геометрия посадочного гнезда.

Повышенный предел эластичности повышает ресурс, так как он уменьшает риск, связанный с наличием неметаллических включений. Применение сталей высокого качества дегазированных и разлитых под вакуумом сегодня является наиболее распространенным.

Поверхностное выкрашивание (шелушение) подшипника

Поверхностное выкрашивание (шелушение) на поверхности металла достаточно распространено и проявляется в форме очень мелких чешуек на подшипнике. Оно связывается с применением смазки недостаточной плотности по отношению к шероховатости поверхности, что провоцирует контакт металл-металл. Основное средство борьбы с этим явлением – уменьшение шероховатости поверхности и повышение вязкости смазочного материала подшипника.

Заедание (заклинивание) подшипника

Проявляется в переносе частичек материала, вырываемых с поверхности, и их осаждение в другом месте микроприпаиванием. Появляется матовые зоны и коричневые следы, свидетельствующие о перегреве. Позднее происходит деформация элементов качения подшипника с отрывом частичек материала и их локализация, элементы качения и сепараторы подшипников разрушаются или сплющиваются и даже полностью свариваются. Необходимо помнить, что заедание неминуемо при отсутствии смазки. Избыток смазки, вопреки сложившемуся мнению, не позволяет снизить трение в подшипнике. Заедание чаще происходит в конических роликовых подшипниках при наличии трения скольжения между роликами и буртиком внутреннего кольца и когда многие ролики повреждены: зачастую это происходит при первых оборотах если не позаботиться о хорошей смазке при запуске.

Другими причинами заклинивания подшипника являются:

Выбор смазки и способа смазки подшипника имеет исключительное значение. Нет необходимости в очень вязкой и обильной (избыточной) смазке, которая приводит к скольжению шариков или роликов по поверхности колец при запуске и торможении подшипника.

Оттиски (отпечатки) от деформации подшипника

Оттиски (отпечатки) от деформации подшипника встречаются очень часто: следы ударов, трещин, растрескивания поверхности, отражающие отсутствие мер предосторожности: случайное падение подшипника, монтаж подшипника с нанесением ударов или с приложением усилий непосредственно к элементам качения, перегрузка подшипника.

Пластические деформации колец подшипника приводят к выемкам без обдирания материала и складкам вытесненного металла или экстракции. Эти отказы не всегда видимы непосредственно: трещины могут в известных случаях привести к последующему разрушению.

Инкрустация инородных частиц

Инкрустация инородных частиц – результат пренебрежения чистотой при монтаже подшипника или попадания случайных примесей. Она выражается в виде отпечатков, продольных непрерывных или прерывистых бороздок на шлифованных поверхностях колец подшипника. Способствует появлению ненормальных люфтов, перекосов, вибраций.

Следы оставляемые неупругими частицами неглубокие и мало заметные. Если частицы твердые, кратеры становятся относительно глубокими с выступающими краями. Если частицы хрупкие, они разрушаются от сжатия и как результат – многочисленные мелкие отпечатки с острыми кромками.

Коррозия подшипника

Коррозия подшипника проявляется в виде пятен от красного до черного цвета, затем в виде зон отслоения материала. Она может быть химической, под действием окисленного масла, агрессивных продуктов, проникших из-за дефектов уплотнения…, или электрохимической с образованием ржавчины от проникновения воды или чрезмерной конденсации. Лучшей защитой против коррозии и защитой от причин способных ее провоцировать является выбор надлежащей смазки. В наиболее тяжелых случаях необходимо применять подшипники из нержавеющей стали, керамики и т.п. Отметим также, что появление коррозии приводит к последующему усталостному разрушению подшипников и выкрашиванию.

Контактная коррозия (фреттинг-коррозия) подшипника

Контактная коррозия проявляется в виде следов розоватого, коричневого или черного цвета более или менее протяженных в зонах наружных опор подшипников. Она возникает при незначительном вращении или вибрации колец по отношению к их опорным поверхностям; внимание было привлечено к феномену 30-х годов, когда констатировали, что подшипники вагонов подвержены серьезным повреждениям.

Контактная коррозия не во всех случаях приводит к непоправимым повреждениям, особенно в ее начале, но если она приводит к повреждению опорного гнезда или вала, то результатом будет ухудшение состояния опорной поверхности и есть основания опасаться растрескивания колец. В большинстве случаев она является следствием неправильной посадки подшипника в корпусе или на валу. В каждом случае монтажа необходимо тщательно соблюдать предписанные зазоры и допуски.

Образование кратеров (электрическая точечная коррозия подшипника)

Электрическая точечная коррозия подшипника провоцирует относительно глубокие микроскопические раковины. Она обязана значительным электрическим токам проходящим через подшипник и создающим маленькие электрические дуги, приводящие к локальному расплавлению и закалке металла. В этом случае вал становится как бы заземляющей массой при сварке.

Образование дорожек (канавок) на подшипнике

Дорожки образуются в результате одновременного воздействия слабых электрических токов и вибраций. Этот феномен чаще проявляется, когда речь идет об электрогенерирующем оборудовании, станках, электровозах и механизмах с приводными ремнями, несущих электростатическую нагрузку. Не известна связь частоты колебаний с другими параметрами работы подшипника: скоростью вращения, частотой тока, нагрузками. Средство борьбы – заземление механизмов, электрическая изоляция подшипников в корпусах, закоротка опор, применение токопроводящей смазки.

Надрывы

Надрывы – узкие разрывы или другие начальные стадии растрескивания, имеют возможными причинами чрезмерные напряжения при монтаже или демонтаже подшипника или трещины при обработке и закалке.

Абразивный износ подшипника

Абразивный износ придает подшипникам серый вид, как бы покрытый инеем. Он появляется при работе в абразивной среде при неудовлетворительной смазке.

Окрашивание (изменение цвета) подшипника

Окрашивание в коричневый, голубоватый или черноватый цвет подшипника является результатом поверхностного окисления в присутствии смазки, полимеризующейся при высокой температуре. Источник ненормального перегрева подшипника может быть внутренним, например избыток смазки, или внешним.

Повреждение сепараторов подшиипников

Повреждения сепараторов происходят главным образом в результате небрежного монтажа подшипника.

Внешние признаки повреждения подшипника

Внешние признаки повреждения подшипников многочисленны:

повышенный момент трения может быть следствием повреждения сепаратора, непригодности смазки, повреждения уплотнения подшипника.

Профилактика и контроль повреждений подшипников

Контролируя работу подшипников, измеряя температуру, шум, вибрации и периодически анализируя качество смазки можно значительно уменьшить риск возникновения повреждений подшипников.

В 90% случаев используются закаленные подшипниковые стали, в 10% — цементированные.

Производители и маркировка

В зависимости от типа производителя, существует определенная маркировка деталей. Если это не корпус для подшипника, своими руками созданный, он обязательно будет иметь обозначение соответствующей компании, его создавшей.

Существует большое множество брендов, но популярными сегодня считаются следующие производители:

  • Китай и Сингапур выпускают детали с маркировкой FBJ.
  • Итальянские элементы механизма для подшипников могут быть промаркированы как KDF или TSC.
  • Япония маркирует свои корпуса как ASAHI или NSK.
  • Продукция SKF настолько дорогая, что ее практически не встретить в оборудовании нашей страны.

Цена на такие изделия зависит от производителя и, как правило, тем выше, чем качественнее сама деталь. Самыми дешевыми, но недолговечными считаются польские и российские корпуса, более высокого качества изготавливаются представленные детали японцами. Далее выше надежность и стоимость имеют узлы итальянского производства, а за ними следуют сербские механизмы. Самыми надежными, но очень дорогими считаются немецкие и шведские, а также некоторые японские (NTN, KOYO) корпуса для подшипников.

Как смазать ступичный подшипник

Хочется очень коротко рассказать о правильной обработке механизма.

Для этого нам понадобится следующее:

  • смазка;
  • сальники;
  • гаечные ключи;
  • гайки ступицы;
  • молоток;
  • плоская отвертка или съемник;
  • жидкость для промывки (подойдёт бензин);
  • WD-40;
  • ветошь.

Выполнение работ по смазке подшипников:

  1. Установить автомобиль на ровную поверхность и затянуть ручник.
  2. Поддомкратить передок либо заднюю часть кузова, в зависимости от того, где расположен нуждающийся в смазке подшипник. Откручиваем колесо и снимаем его.
  3. С помощью подходящего инструмента ослабить ступичную гайку.
  4. Снять тормозной диск и отсоединить ступицу от поворотного кулака, выкрутить до конца ступичную гайку.
  5. Выбить ступицу из полуоси с помощью молотка.
  6. Снять обойму с подшипником. Не помешает жидкость WD-40, так как часто детали в этом месте закисают.
  7. Удалить старую смазку с подшипника с помощью жидкости для промывки. Промыть подшипник и его посадочное место. Вытереть остатки жидкости насухо, воспользовавшись тряпкой.
  8. Нанести смазку на сепаратор подшипника.
  9. Установить подшипник на место и отцентрировать его обоймой. Выполнить сборку в обратной последовательности. Если на автомобиле установлены барабанные тормоза, снимать ступицу необязательно.

У некоторых автомобилистов возникают трудности со смазкой подшипников в неразборных ступицах. В них подшипник и фланец соединены в общем корпусе. В таких ситуациях вещество наносится с помощью шприца. Для этого надо сделать несколько отверстий с помощью дрели. После выполнения процедуры необходимо закрыть отверстия с помощью герметика либо холодной сварки.

Ссылка на основную публикацию
Статьи c упоминанием слов:

Adblock
detector